Suppr超能文献

基于元贝叶斯优化的深部脑刺激

Meta-Bayesian Optimization for Deep Brain Stimulation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1729-1733. doi: 10.1109/EMBC48229.2022.9871279.

Abstract

Deep brain stimulation (DBS) is becoming a fundamental tool for the treatment and study of neurological and psychiatric diseases and disorders. Recently developed DBS devices and electrodes have allowed for more flexible and precise stimulation. Densely packed stimulation contacts can be independently stimulated to shape the electric field, targeting pathways of interest, and avoiding those that may cause side-effects. However, this flexibility comes at a cost. Each additional stimulation setting causes an exponential increase in the number of potential stimulation settings. Recent works have addressed this problem using Bayesian optimization. However, this approach has a limited ability to learn from multiple subjects to improve performance. In this study we extend a recently developed meta-Bayesian optimization algorithm to the DBS domain. We evaluated this approach compared to classical Bayesian optimization and a random search using data collected from a nonhuman primate during stimulation of the subthalamic nucleus while recording evoked potentials in the motor cortex and locally within the subthalamic nucleus. On the task of finding the stimulation setting that maximized the evoked potential across a distribution of generated objective functions, meta-Bayesian optimization significantly outperformed the other approaches with a cumulative reward of 8.93±0.70, compared to 7.17±1.64 for Bayesian optimization (p < 10) and 6.89±1.56 for the random search (p < 10). Moreover, the algorithm outperformed Bayesian optimization when tested on an objective function not used during training. These results demonstrate that meta-Bayesian optimization can take advantage of the structure underlying a distribution of objective function and learn an optimal search strategy that can generalize beyond the objective functions that were not part of the training data. Clinical Relevance - This extends a meta-Bayesian optimization approach for optimizing DBS stimulation settings that outperforms state-of-art algorithms by 24.6%.

摘要

脑深部刺激(DBS)正成为治疗和研究神经和精神疾病的基本工具。最近开发的 DBS 设备和电极允许更灵活和精确的刺激。可以独立刺激密集排列的刺激触点,以形成电场,针对感兴趣的途径,并避免可能引起副作用的途径。然而,这种灵活性是有代价的。每个额外的刺激设置都会导致潜在刺激设置数量呈指数级增加。最近的研究工作已经使用贝叶斯优化来解决这个问题。然而,这种方法从多个主体学习以提高性能的能力有限。在这项研究中,我们将一种最近开发的元贝叶斯优化算法扩展到 DBS 领域。我们评估了这种方法与经典贝叶斯优化和随机搜索的比较,使用从非人类灵长类动物在刺激丘脑底核时记录运动皮层和丘脑底核内的诱发电位的数据。在寻找最大化生成目标函数分布中诱发电位的刺激设置的任务中,元贝叶斯优化在累积奖励方面明显优于其他方法,为 8.93±0.70,而贝叶斯优化为 7.17±1.64(p<10),随机搜索为 6.89±1.56(p<10)。此外,当在训练过程中未使用的目标函数上进行测试时,该算法的性能优于贝叶斯优化。这些结果表明,元贝叶斯优化可以利用目标函数分布的结构,并学习一种可以超越未包含在训练数据中的目标函数的最优搜索策略。临床相关性-这扩展了一种用于优化 DBS 刺激设置的元贝叶斯优化方法,其性能比最先进的算法高出 24.6%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验