Rai A N, Söderbäck E, Bergman B
1 Department of Biochemistry, North-Eastern Hill University, Shillong-793022, India.
New Phytol. 2000 Sep;147(3):449-481. doi: 10.1046/j.1469-8137.2000.00720.x.
Cyanobacteria are an ancient, morphologically diverse group of prokaryotes with an oxygenic photosynthesis. Many cyanobacteria also possess the ability to fix N . Although well suited to an independent existence in nature, some cyanobacteria occur in symbiosis with a wide range of hosts (protists, animals and plants). Among plants, such symbioses have independently evolved in phylogenetically diverse genera belonging to the algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms. These are N -fixing symbioses involving heterocystous cyanobacteria, particularly Nostoc, as cyanobionts (cyanobacterial partners). A given host species associates with only a particular cyanobiont genus but such specificity does not extend to the strain level. The cyanobiont is located under a microaerobic environment in a variety of host organs and tissues (bladder, thalli and cephalodia in fungi; cavities in gametophytes of hornworts and liverworts or fronds of the Azolla sporophyte; coralloid roots in cycads; stem glands in Gunnera). Except for fungi, the hosts form these structures ahead of the cyanobiont infection. The symbiosis lasts for one generation except in Azolla and diatoms, in which it is perpetuated from generation to generation. Within each generation, multiple fresh infections occur as new symbiotic tissues and organs develop. The symbioses are stable over a wide range of environmental conditions, and sensing-signalling between partners ensures their synchronized growth and development. The cyanobiont population is kept constant in relation to the host biomass through controlled initiation and infection, nutrient supply and cell division. In most cases, the partners have remained facultative, with the cyanobiont residing extracellularly in the host. However, in the water-fern Azolla and the freshwater diatom Rhopalodia the association is obligate. The cyanobionts occur intracellularly in diatoms, the fungus Geosiphon and the angiosperm Gunner a. Close cell-cell contact and the development of special structures ensure efficient nutrient exchange between the partners. The mobile nutrients are normal products of the donor cells, although their production is increased in symbiosis. Establishment of cyanobacterial-plant symbioses differs from chloroplast evolution. In these symbioses, the cyanobiont undergoes structural-functional changes suited to its role as provider of fixed N rather than fixed C, and the level of intimacy is far less than that of an organelle. This review provides an updated account of cyanobacterial-plant symbioses, particularly concerning developments during the past 10 yr. Various aspects of these symbioses such as initiation and development, symbiont diversity, recognition and signalling, structural-functional modifications, integration, and nutrient exchange are reviewed and discussed, as are evolutionary aspects and the potential uses of cyanobacterial-plant symbioses. Finally we outline areas that require special attention for future research. Not only will these provide information of academic interest but they will also help to improve the use of Azolla as green manure, to enable us to establish artificial N -fixing associations with cereals such as rice, and to allow the manipulation of free-living cyanobacteria for photobiological ammonia or hydrogen production or for use as biofertilizers. contents Summary 449 I. introduction 450 II. the partners 451 III. initiation and development of symbioses 458 IV. the symbioses 462 V. evolutionary aspects 472 VI. artificial symbioses 474 VII. future outlook and perspectives 475 Acknowledgements 477 References 477.
蓝细菌是一类古老的、形态多样的原核生物,能够进行产氧光合作用。许多蓝细菌还具有固氮能力。尽管它们非常适合在自然环境中独立生存,但一些蓝细菌与多种宿主(原生生物、动物和植物)形成共生关系。在植物中,这种共生关系在属于藻类、真菌、苔藓植物、蕨类植物、裸子植物和被子植物的系统发育不同的属中独立进化。这些是涉及异形胞蓝细菌(特别是念珠藻属)作为蓝共生体(蓝细菌伙伴)的固氮共生关系。特定的宿主物种仅与特定的蓝共生体属相关联,但这种特异性并不延伸到菌株水平。蓝共生体位于各种宿主器官和组织中的微需氧环境中(真菌中的气囊、叶状体和头状体;角苔和地钱配子体的腔或满江红孢子体的叶;苏铁的珊瑚状根;大叶草的茎腺)。除真菌外,宿主在蓝共生体感染之前形成这些结构。共生关系持续一代,满江红和硅藻除外,在满江红和硅藻中,共生关系代代相传。在每一代中,随着新的共生组织和器官的发育,会发生多次新的感染。这些共生关系在广泛的环境条件下是稳定的,伙伴之间的传感信号确保它们同步生长和发育。通过控制起始和感染、营养供应和细胞分裂,蓝共生体种群与宿主生物量保持恒定关系。在大多数情况下,伙伴之间仍然是兼性的,蓝共生体位于宿主细胞外。然而,在水生蕨类植物满江红和淡水硅藻罗氏硅藻中,这种关联是专性的。蓝共生体存在于硅藻、真菌地管藻和被子植物大叶草的细胞内。紧密的细胞间接触和特殊结构的发育确保了伙伴之间有效的营养交换。流动营养物质是供体细胞的正常产物,尽管它们在共生关系中的产量会增加。蓝细菌与植物共生关系的建立不同于叶绿体的进化。在这些共生关系中,蓝共生体经历了结构功能变化,以适应其作为固定氮而非固定碳提供者的角色,并且亲密程度远低于细胞器。本综述提供了蓝细菌与植物共生关系的最新情况,特别是关于过去10年的进展。对这些共生关系的各个方面,如起始和发育、共生体多样性、识别和信号传导、结构功能修饰、整合和营养交换进行了综述和讨论,还讨论了进化方面以及蓝细菌与植物共生关系的潜在用途。最后,我们概述了未来研究需要特别关注的领域。这些不仅将提供学术上感兴趣的信息,还将有助于改进满江红作为绿肥的利用,使我们能够与水稻等谷物建立人工固氮关联,并允许操纵自由生活的蓝细菌用于光生物制氨或制氢或用作生物肥料。内容摘要449 一.引言450二.伙伴451三.共生关系的起始和发育458四.共生关系462五.进化方面472六.人工共生关系474七.未来展望和前景475致谢477参考文献477