Suppr超能文献

蜉蝣糖苷三酮 δ-内酰胺角蝉素诱导水生满江红鱼腥藻共生体中的类囊体分化。

The crane fly glycosylated triketide δ-lactone cornicinine elicits akinete differentiation of the cyanobiont in aquatic Azolla fern symbioses.

机构信息

Department of Biology, Utrecht University, Utrecht, The Netherlands.

Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

出版信息

Plant Cell Environ. 2024 Jul;47(7):2675-2692. doi: 10.1111/pce.14907. Epub 2024 Apr 10.

Abstract

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO draw-down during the Eocene geological past.

摘要

先前并未描述过昆虫半化学物质对植物共生体固氮的限制作用。在这里,我们报告了一种来自 Nephrotoma cornicina 虻蝇的糖基化三酮 δ-内酯——角蝇素,它会导致浮萍属植物与蓝细菌的共生关系中出现黄化现象。只有化学合成的角蝇素的糖基化反式-A 形式具有活性:生长培养基中 500 nM 的角蝇素可将 Nostoc azollae 中的所有蓝细菌丝转变为通常分泌 CTB 细菌素的类芽孢体。角蝇素进一步抑制了浮萍孢子体中的类芽孢体萌发,从而阻止了有性生殖过程中共生关系的重新建立。它不会影响拟南芥等植物或来自鱼腥藻属或念珠藻属的几种自由生活蓝细菌的发育,但会影响没有蓝藻共生体的蕨类宿主。从分离的叶腔中进行的蕨类宿主 mRNA 测序证实,富含毛状体的组织中具有高 NH 同化和原花青素生物合成。在用角蝇素处理后,它揭示了 Cullin-RING 泛素连接酶途径的激活,该途径已知介导代谢物信号和植物诱导,与黄化表型一致,并增加了 JA 氧化酶、硫酸盐转运和外体形成。这项工作开始揭示在当今湿地生态或循环作物生产中非常重要的无种子植物共生体中,蓝藻共生体分化的分子机制,这在过去的始新世地质时期曾导致大量 CO 消耗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验