Suppr超能文献

解析精神病性谱系障碍中的认知异质性

Disentangling Cognitive Heterogeneity in Psychotic Spectrum Disorders.

作者信息

Buonocore Mariachiara, Inguscio Emanuela, Bosinelli Francesca, Bechi Margherita, Agostoni Giulia, Spangaro Marco, Martini Francesca, Bianchi Laura, Cocchi Federica, Guglielmino Carmelo, Repaci Federica, Bosia Marta, Cavallaro Roberto

机构信息

Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.

School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.

出版信息

Asian J Psychiatr. 2021 Jun;60:102651. doi: 10.1016/j.ajp.2021.102651. Epub 2021 Apr 6.

Abstract

Neuropsychological impairments represent a central feature of psychosis-spectrum disorders. It is characterized by a great both within- and between-subjects variability (i.e. cognitive heterogeneity), which needs to be better disentangled. The present study aimed to describe the distribution of performance on the Brief Assessment of Cognition in Schizophrenia (BACS) by using the Equivalent Scores, in order to balance statistical methodological problems. To do so, cognitive performance groups were branded, identifying the main factors contributing to cognitive heterogeneity. A sample of 583 patients with a diagnosis of Schizophrenia or Psychotic Disorder Not Otherwise Specified was enrolled and assessed for neurocognition and intellectual level. K-means cluster analysis was performed based on BACS Equivalent Scores. Differences among clusters were analyzed throughout Analysis of Variance and Discriminant Function Analysis in order to identify the most significant predictors of cluster membership. For each cognitive task, roughly 40% of patients displayed poor performance, while up to 63% displayed a symbol-coding deficit. K-means cluster analysis depicted three profiles characterized by "near-normal" cognition, widespread impairment, and "borderline" profile. Discriminant analysis selected Verbal IQ and diagnosis as predictors of cluster membership. Our findings support the usefulness of Equivalent Scores and cluster analysis to explain cognitive heterogeneity, and tailor better interventions.

摘要

神经心理障碍是精神分裂症谱系障碍的核心特征。其特点是个体内部和个体之间存在很大的变异性(即认知异质性),这需要更好地梳理清楚。本研究旨在使用等效分数来描述精神分裂症认知简短评估(BACS)的表现分布,以平衡统计方法学问题。为此,对认知表现组进行了分类,确定了导致认知异质性的主要因素。招募了583名诊断为精神分裂症或未另行指定的精神障碍患者,并对其进行神经认知和智力水平评估。基于BACS等效分数进行了K均值聚类分析。通过方差分析和判别函数分析对聚类之间的差异进行了分析,以确定聚类成员的最显著预测因素。对于每项认知任务,约40%的患者表现不佳,而高达63%的患者存在符号编码缺陷。K均值聚类分析描绘了三种特征,分别为“接近正常”认知、广泛受损和“临界”特征。判别分析选择言语智商和诊断作为聚类成员的预测因素。我们的研究结果支持等效分数和聚类分析在解释认知异质性以及制定更好的干预措施方面的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验