Suppr超能文献

大孔道的分子本质。

On the molecular nature of large-pore channels.

机构信息

W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2021 Aug 20;433(17):166994. doi: 10.1016/j.jmb.2021.166994. Epub 2021 Apr 16.

Abstract

Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called "large-pore channel" exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.

摘要

膜转运是控制细胞凋亡、炎症和神经退行性变等基本细胞过程的一种基本手段,由许多转运体、泵和通道介导。过去半个世纪的大量证据表明,存在一种所谓的“大孔通道”,以缝隙连接和非缝隙连接形式存在于各种组织和器官中,以便不仅流动离子,而且还流动代谢物如 ATP。它们由许多蛋白质家族形成,这些家族之间几乎没有或没有进化联系,包括连接蛋白、连接蛋白、连接蛋白、富含亮氨酸重复序列 8 (LRRC8) 和钙稳态调节剂 (CALHM)。本综述从连接蛋白缝隙连接通道开始,总结了大孔通道的历史和概念,再到最近的连接蛋白、连接蛋白、LRRC8 和 CALHM 的发展。我们根据现有结构描述了大孔通道的结构和功能特征,这些特征对其在不同功能中的作用至关重要。

相似文献

1
On the molecular nature of large-pore channels.大孔道的分子本质。
J Mol Biol. 2021 Aug 20;433(17):166994. doi: 10.1016/j.jmb.2021.166994. Epub 2021 Apr 16.
2
Contribution of large-pore channels to inflammation induced by microorganisms.大孔通道在微生物诱导的炎症中的作用。
Front Cell Dev Biol. 2023 Jan 9;10:1094362. doi: 10.3389/fcell.2022.1094362. eCollection 2022.
3
Calcium homeostasis modulator (CALHM) ion channels.钙稳态调节剂(CALHM)离子通道
Pflugers Arch. 2016 Mar;468(3):395-403. doi: 10.1007/s00424-015-1757-6. Epub 2015 Nov 25.
4
Pannexin channels are not gap junction hemichannels.缝隙连接通道不是连接子通道。
Channels (Austin). 2011 May-Jun;5(3):193-7. doi: 10.4161/chan.5.3.15765. Epub 2011 May 1.

引用本文的文献

4
A mechanism of CALHM1 ion channel gating.CALHM1离子通道门控机制。
Am J Physiol Cell Physiol. 2025 Apr 1;328(4):C1109-C1124. doi: 10.1152/ajpcell.00925.2024. Epub 2025 Feb 21.
6
PANX1 hexamers work but cells prefer heptamers.泛连接蛋白1六聚体起作用,但细胞更喜欢七聚体。
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413727. Epub 2025 Feb 5.
7
9
The C-terminal activating domain promotes pannexin 1 channel opening.C 末端激活结构域促进泛连接蛋白 1 通道开放。
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2411898121. doi: 10.1073/pnas.2411898121. Epub 2024 Dec 13.

本文引用的文献

4
LRRC8A:C/E Heteromeric Channels Are Ubiquitous Transporters of cGAMP.LRRC8A:C/E 异型通道是 cGAMP 的普遍转运体。
Mol Cell. 2020 Nov 19;80(4):578-591.e5. doi: 10.1016/j.molcel.2020.10.021. Epub 2020 Nov 9.
5
Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel.人源 Cx31.3/GJC3 连接子半通道的冷冻电镜结构。
Sci Adv. 2020 Aug 28;6(35):eaba4996. doi: 10.1126/sciadv.aba4996. eCollection 2020 Aug.
7
Cryo-EM structure of the calcium homeostasis modulator 1 channel.钙稳态调节剂 1 通道的冷冻电镜结构。
Sci Adv. 2020 Jul 17;6(29):eaba8161. doi: 10.1126/sciadv.aba8161. eCollection 2020 Jul.
9
Structural Basis of Functional Transitions in Mammalian NMDA Receptors.哺乳动物 NMDA 受体功能转变的结构基础。
Cell. 2020 Jul 23;182(2):357-371.e13. doi: 10.1016/j.cell.2020.05.052. Epub 2020 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验