Suppr超能文献

灵长类动物空间记忆细胞早期变得具有调谐性,并在细胞特异性时间失去调谐性。

Primate Spatial Memory Cells Become Tuned Early and Lose Tuning at Cell-Specific Times.

机构信息

Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.

出版信息

Cereb Cortex. 2021 Jul 29;31(9):4206-4219. doi: 10.1093/cercor/bhab079.

Abstract

Working memory, the ability to maintain and transform information, is critical for cognition. Spatial working memory is particularly well studied. The premier model for spatial memory is the continuous attractor network, which posits that cells maintain constant activity over memory periods. Alternative models propose complex dynamics that result in a variety of cell activity time courses. We recorded from neurons in the frontal eye fields and dorsolateral prefrontal cortex of 2 macaques during long (5-15 s) memory periods. We found that memory cells turn on early after stimulus presentation, sustain activity for distinct and fixed lengths of time, then turn off and stay off for the remainder of the memory period. These dynamics are more complex than the dynamics of a canonical bump attractor network model (either decaying or nondecaying) but more constrained than the dynamics of fully heterogeneous memory models. We speculate that memory may be supported by multiple attractor networks working in parallel, with each network having its own characteristic mean turn-off time such that mnemonic resources are gradually freed up over time.

摘要

工作记忆是维持和转化信息的能力,对认知至关重要。空间工作记忆是研究得特别多的。空间记忆的主要模型是连续吸引子网络,它假设细胞在记忆期间保持恒定的活动。替代模型提出了导致各种细胞活动时间过程的复杂动力学。我们在 2 只猕猴的额眼区和背外侧前额叶皮层记录神经元,在长时间(5-15 秒)的记忆期间。我们发现记忆细胞在刺激呈现后早期开启,持续固定的时间长度,然后关闭并在记忆期间的其余时间保持关闭。这些动力学比经典的凸起吸引子网络模型(衰减或非衰减)的动力学更复杂,但比完全异构记忆模型的动力学更受约束。我们推测,记忆可能是由多个吸引子网络并行工作支持的,每个网络都有自己的特征平均关闭时间,因此记忆资源随着时间的推移逐渐释放。

相似文献

2
Dissociation of LFP Power and Tuning in the Frontal Cortex during Memory.记忆过程中前额皮质 LFP 功率和调谐的分离
J Neurosci. 2018 Sep 19;38(38):8177-8186. doi: 10.1523/JNEUROSCI.3629-17.2018. Epub 2018 Aug 9.
7
Mixed selectivity morphs population codes in prefrontal cortex.混合选择性形态改变前额叶皮层的群体代码。
Nat Neurosci. 2017 Dec;20(12):1770-1779. doi: 10.1038/s41593-017-0003-2. Epub 2017 Oct 9.
9
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.顶叶和前额叶皮质中的记忆编码与皮质组织
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.

引用本文的文献

1
Timescales of learning in prefrontal cortex.前额叶皮层的学习时间表。
Nat Rev Neurosci. 2024 Sep;25(9):597-610. doi: 10.1038/s41583-024-00836-8. Epub 2024 Jun 27.

本文引用的文献

1
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
Dissociation of LFP Power and Tuning in the Frontal Cortex during Memory.记忆过程中前额皮质 LFP 功率和调谐的分离
J Neurosci. 2018 Sep 19;38(38):8177-8186. doi: 10.1523/JNEUROSCI.3629-17.2018. Epub 2018 Aug 9.
4
Persistent Spiking Activity Underlies Working Memory.持续的尖峰活动是工作记忆的基础。
J Neurosci. 2018 Aug 8;38(32):7020-7028. doi: 10.1523/JNEUROSCI.2486-17.2018.
8
Multiple component networks support working memory in prefrontal cortex.多个组件网络支持前额叶皮层中的工作记忆。
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11084-9. doi: 10.1073/pnas.1504172112. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验