Suppr超能文献

利用机器学习方法探索医疗保健就诊被错过的 HIV 诊断机会的预测因素。

Using a machine learning approach to explore predictors of healthcare visits as missed opportunities for HIV diagnosis.

机构信息

Department of Internal Medicine, School of Medicine.

South Carolina SmartState Center for Healthcare Quality.

出版信息

AIDS. 2021 May 1;35(Suppl 1):S7-S18. doi: 10.1097/QAD.0000000000002735.

Abstract

OBJECTIVES

A significant number of individuals with a new HIV diagnosis are still late presenters despite numerous healthcare encounters prior to HIV diagnosis. We employed a machine learning approach to identify the predictors for the missed opportunities for earlier HIV diagnosis.

METHODS

The cohort comprised of individuals who were diagnosed with HIV in South Carolina from January 2008 to December 2016. Late presenters (LPs) (initial CD4 ≤200 cells/mm3 within one month of HIV diagnosis) with any healthcare visit during three years prior to HIV diagnosis were defined as patients with a missed opportunity. Using least absolute shrinkage and selection operator (LASSO) regression, two prediction models were developed to capture the impact of facility type (model 1) and physician specialty (model 2) of healthcare visits on missed opportunities.

RESULTS

Among 4,725 eligible participants, 72.2% had at least one healthcare visit prior to their HIV diagnosis, with most of the healthcare visits (78.5%) happening in the emergency departments (ED). A total of 1,148 individuals were LPs, resulting in an overall prevalence of 24.3% for the missed opportunities for earlier HIV diagnosis. Common predictors in both models included ED visit, older age, male gender, and alcohol use.

CONCLUSIONS

The findings underscored the need to reinforce the universal HIV testing strategy ED remains an important venue for HIV screening, especially for medically underserved or elder population. An improved and timely HIV screening strategy in clinical settings can be a key for early HIV diagnosis and play an increasingly important role in ending HIV epidemic.

摘要

目的

尽管在 HIV 诊断之前有许多医疗接触,但仍有相当数量的新 HIV 诊断个体为晚期出现。我们采用机器学习方法来确定错过早期 HIV 诊断机会的预测因素。

方法

该队列包括 2008 年 1 月至 2016 年 12 月在南卡罗来纳州被诊断出 HIV 的个体。晚期出现者(LP)(在 HIV 诊断后一个月内初始 CD4 细胞≤200 个/立方毫米)定义为有错过机会的患者,他们在 HIV 诊断前三年中有任何医疗就诊。使用最小绝对收缩和选择算子(LASSO)回归,建立了两个预测模型来捕捉医疗就诊的医疗机构类型(模型 1)和医生专业(模型 2)对错过机会的影响。

结果

在 4725 名合格参与者中,72.2%的人在 HIV 诊断前至少有一次医疗就诊,其中大部分医疗就诊(78.5%)发生在急诊部(ED)。共有 1148 人是 LP,总体错过早期 HIV 诊断机会的发生率为 24.3%。两个模型中的常见预测因素包括 ED 就诊、年龄较大、男性和饮酒。

结论

研究结果强调需要加强普遍的 HIV 检测策略,ED 仍然是 HIV 筛查的重要场所,尤其是对于医疗服务不足或老年人群。改善和及时的临床环境中的 HIV 筛查策略可以是早期 HIV 诊断的关键,并在终结 HIV 流行方面发挥越来越重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d89/8172090/a69e98324a9c/nihms-1647976-f0001.jpg

相似文献

8
Diagnosing HIV infection in primary care settings: missed opportunities.在基层医疗环境中诊断 HIV 感染:错失的机会。
AIDS Patient Care STDS. 2013 Jul;27(7):392-7. doi: 10.1089/apc.2013.0099. Epub 2013 Jun 25.

引用本文的文献

5
Power of Big Data in ending HIV.大数据终结艾滋病的力量。
AIDS. 2021 May 1;35(Suppl 1):S1-S5. doi: 10.1097/QAD.0000000000002888.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验