Seboka Binyam Tariku, Yehualashet Delelegn Emwodew, Tesfa Getanew Aschalew
School of Public Health, Dilla University, Dilla, Ethiopia.
Int J Gen Med. 2023 Feb 3;16:435-451. doi: 10.2147/IJGM.S397031. eCollection 2023.
Despite the success made in scaling up HIV treatment activities, there remains a tremendous unmet demand for the monitoring of the disease progression and treatment success, which threatens HIV/AIDS treatment and control. This research presented the assessments of viral load and CD4 classification of adults enrolled in ART care using machine learning algorithms.
We trained, validated, and tested eight machine learning (ML) classifier algorithms with historical data, including demographics, clinical, and laboratory data. Data were extracted from the ART registry database of Yirgacheffe Primary Hospital and Dilla University Referral Hospital. ML classifiers were trained to predict virological failure (viral load >1000 copies/mL) and poor CD4 (CD4 cell count <200 cells/mL). The model predictive performances were evaluated using accuracy, sensitivity, specificity, precision, f1-score, F-beta scores, and AUC.
The mean age of the sample participants was 41.6 years (SD = 10.9). The experimental results showed that XGB classifier ranked as the best algorithm for viral load prediction in terms of sensitivity (97%), f1-score (96%), AUC (0.99), accuracy (96%), followed by RF. The GB classifier exhibited a better predictive capability in predicting participants with a CD4 cell count <200 cells/mL.
In this study, the XGB and RF models had the highest accuracy and outperformed on various evaluation metrics among the models examined for viral load classification. In the prediction of participants CD4, GB model had the highest accuracy.
尽管在扩大艾滋病病毒治疗活动方面取得了成功,但在疾病进展监测和治疗效果监测方面仍存在巨大的未满足需求,这对艾滋病病毒/艾滋病的治疗和控制构成威胁。本研究使用机器学习算法对接受抗逆转录病毒治疗护理的成年人的病毒载量和CD4分类进行了评估。
我们使用历史数据(包括人口统计学、临床和实验室数据)对八种机器学习(ML)分类器算法进行了训练、验证和测试。数据从伊尔加切夫初级医院和迪拉大学转诊医院的抗逆转录病毒治疗登记数据库中提取。训练ML分类器以预测病毒学失败(病毒载量>1000拷贝/毫升)和低CD4水平(CD4细胞计数<200细胞/毫升)。使用准确率、灵敏度、特异性、精确率、F1分数、F贝塔分数和AUC评估模型的预测性能。
样本参与者的平均年龄为41.6岁(标准差=10.9)。实验结果表明,就灵敏度(97%)、F1分数(96%)、AUC(0.99)、准确率(96%)而言,XGB分类器在病毒载量预测方面排名最佳算法,其次是随机森林(RF)。GB分类器在预测CD4细胞计数<200细胞/毫升的参与者方面表现出更好的预测能力。
在本研究中,XGB和RF模型在用于病毒载量分类的模型中具有最高的准确率,并且在各种评估指标上表现优于其他模型。在预测参与者的CD4水平方面,GB模型具有最高的准确率。