Suppr超能文献

运用机器学习建模框架预测美国北卡罗来纳州梅克伦堡县新诊断出 HIV 的患者延迟与护理机构建立联系的情况。

Applying a machine learning modelling framework to predict delayed linkage to care in patients newly diagnosed with HIV in Mecklenburg County, North Carolina, USA.

机构信息

Department of Public Health Sciences, College of Health and Human Services.

School of Data Science, UNC Charlotte, Charlotte, North Carolina.

出版信息

AIDS. 2021 May 1;35(Suppl 1):S29-S38. doi: 10.1097/QAD.0000000000002830.

Abstract

BACKGROUND

Machine learning has the potential to help researchers better understand and close the gap in HIV care delivery in large metropolitan regions such as Mecklenburg County, North Carolina, USA.

OBJECTIVES

We aim to identify important risk factors associated with delayed linkage to care for HIV patients with novel machine learning models and identify high-risk regions of the delay.

METHODS

Deidentified 2013-2017 Mecklenburg County surveillance data in eHARS format were requested. Both univariate analyses and machine learning random forest model (developed in R 3.5.0) were applied to quantify associations between delayed linkage to care (>30 days after diagnosis) and various risk factors for individual HIV patients. We also aggregated linkage to care by zip codes to identify high-risk communities within the county.

RESULTS

Types of HIV-diagnosing facility significantly influenced time to linkage; first diagnosis in hospital was associated with the shortest time to linkage. HIV patients with lower CD4+ cell counts (<200/ml) were twice as likely to link to care within 30 days than those with higher CD4+ cell count. Random forest model achieved high accuracy (>80% without CD4+ cell count data and >95% with CD4+ cell count data) to predict risk of delay in linkage to care. In addition, we also identified top high-risk zip codes of delayed linkage.

CONCLUSION

The findings helped public health teams identify high-risk communities of delayed HIV care continuum across Mecklenburg County. The methodology framework can be applied to other regions with HIV epidemic and challenge of delayed linkage to care.

摘要

背景

机器学习有潜力帮助研究人员更好地了解和弥合美国北卡罗来纳州梅克伦堡县等大都市地区的艾滋病毒护理提供方面的差距。

目的

我们旨在通过新的机器学习模型确定与艾滋病毒患者延迟获得护理相关的重要风险因素,并确定延迟的高风险区域。

方法

请求以电子健康档案系统(eHARS)格式提供的 2013-2017 年梅克伦堡县监测数据。我们应用了单变量分析和机器学习随机森林模型(在 R 3.5.0 中开发)来量化延迟获得护理(诊断后超过 30 天)与个体艾滋病毒患者的各种风险因素之间的关联。我们还通过邮政编码汇总了获得护理的情况,以确定该县内的高风险社区。

结果

艾滋病毒诊断机构的类型对获得护理的时间有重大影响;在医院进行首次诊断与获得护理的时间最短相关。CD4+细胞计数较低(<200/ml)的艾滋病毒患者在 30 天内获得护理的可能性是 CD4+细胞计数较高的患者的两倍。随机森林模型在预测获得护理的延迟风险方面具有很高的准确性(不包括 CD4+细胞计数数据时>80%,包括 CD4+细胞计数数据时>95%)。此外,我们还确定了延迟获得护理的邮政编码的前几个高风险邮政编码。

结论

这些发现有助于公共卫生团队识别梅克伦堡县艾滋病毒护理连续体延迟的高风险社区。该方法框架可应用于其他存在艾滋病毒流行和延迟获得护理挑战的地区。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验