Suppr超能文献

利用机器学习预测青少年与艾滋病相关的行为:精准艾滋病预防的基础。

Adolescent HIV-related behavioural prediction using machine learning: a foundation for precision HIV prevention.

机构信息

Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts, USA.

Office of HIV/AIDS, Ministry of Health, Shirley Street, Nassau, The Bahamas.

出版信息

AIDS. 2021 May 1;35(Suppl 1):S75-S84. doi: 10.1097/QAD.0000000000002867.

Abstract

BACKGROUND

Precision prevention is increasingly important in HIV prevention research to move beyond universal interventions to those tailored for high-risk individuals. The current study was designed to develop machine learning algorithms for predicting adolescent HIV risk behaviours.

METHODS

Comprehensive longitudinal data on adolescent risk behaviours, perceptions, peer and family influence, and neighbourhood risk factors were collected from 2564 grade-10 students at baseline followed for 24 months over 2008-2012. Machine learning techniques [support vector machine (SVM) and random forests] were applied to innovatively leverage longitudinal data for robust HIV risk behaviour prediction. In this study, we focused on two adolescent risk behaviours: had ever had sex and had multiple sex partners. Twenty percent of the data were withheld for model testing.

RESULTS

The SVM model with cost-sensitive learning achieved the highest sensitivity, at 79.1%, specificity of 75.4% with AUC of 0.86 in predicting multiple sex partners on the training data (10-fold cross-validation), and sensitivity of 79.7%, specificity of 76.5% with AUC of 0.86 on the testing data. The random forest model obtained the best performance in predicting had ever had sex, yielding the sensitivity of 78.5%, specificity of 73.1% with AUC of 0.84 on the training data and sensitivity of 82.7%, specificity of 75.3% with AUC of 0.87 on the testing data.

CONCLUSION

Machine learning methods can be used to build effective prediction model(s) to identify adolescents who are likely to engage in HIV risk behaviours. This study builds a foundation for targeted intervention strategies and informs precision prevention efforts in school-setting.

摘要

背景

精准预防在 HIV 预防研究中变得越来越重要,需要超越普遍干预措施,转向针对高风险个体的措施。本研究旨在开发用于预测青少年 HIV 风险行为的机器学习算法。

方法

2008 年至 2012 年期间,对 2564 名 10 年级学生进行了全面的纵向风险行为、感知、同伴和家庭影响以及邻里风险因素的纵向数据收集,对这些学生进行了为期 24 个月的随访。机器学习技术(支持向量机[SVM]和随机森林)被应用于创新地利用纵向数据进行稳健的 HIV 风险行为预测。在这项研究中,我们专注于两种青少年风险行为:曾经发生过性行为和有多个性伴侣。20%的数据被保留用于模型测试。

结果

SVM 模型与成本敏感学习相结合,在预测多性伴侣方面,在训练数据(10 倍交叉验证)上获得了最高的敏感性 79.1%,特异性 75.4%,AUC 为 0.86,在测试数据上获得了敏感性 79.7%,特异性 76.5%,AUC 为 0.86。随机森林模型在预测曾有过性行为方面表现最佳,在训练数据上获得了敏感性 78.5%,特异性 73.1%,AUC 为 0.84,在测试数据上获得了敏感性 82.7%,特异性 75.3%,AUC 为 0.87。

结论

机器学习方法可用于构建有效的预测模型,以识别可能从事 HIV 风险行为的青少年。这项研究为在学校环境中制定有针对性的干预策略和实施精准预防措施奠定了基础。

相似文献

引用本文的文献

8
Power of Big Data in ending HIV.大数据终结艾滋病的力量。
AIDS. 2021 May 1;35(Suppl 1):S1-S5. doi: 10.1097/QAD.0000000000002888.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验