Suppr超能文献

利用机器学习算法评估孟加拉国大学生感知压力的现状及预测因素。

Prevalence and predicting factors of perceived stress among Bangladeshi university students using machine learning algorithms.

机构信息

Department of Statistics, Jahangirnagar University, Dhaka, Bangladesh.

Bangladesh Breastfeeding Foundation (BBF), Institute of Public Health, Dhaka, Bangladesh.

出版信息

J Health Popul Nutr. 2021 Nov 27;40(1):50. doi: 10.1186/s41043-021-00276-5.

Abstract

BACKGROUND

Stress-related mental health problems are one of the most common causes of the burden in university students worldwide. Many studies have been conducted to predict the prevalence of stress among university students, however most of these analyses were predominantly performed using the basic logistic regression (LR) model. As an alternative, we used the advanced machine learning (ML) approaches for detecting significant risk factors and to predict the prevalence of stress among Bangladeshi university students.

METHODS

This prevalence study surveyed 355 students from twenty-eight different Bangladeshi universities using questions concerning anthropometric measurements, academic, lifestyles, and health-related information, which referred to the perceived stress status of the respondents (yes or no). Boruta algorithm was used in determining the significant prognostic factors of the prevalence of stress. Prediction models were built using decision tree (DT), random forest (RF), support vector machine (SVM), and LR, and their performances were evaluated using parameters of confusion matrix, receiver operating characteristics (ROC) curves, and k-fold cross-validation techniques.

RESULTS

One-third of university students reported stress within the last 12 months. Students' pulse rate, systolic and diastolic blood pressures, sleep status, smoking status, and academic background were selected as the important features for predicting the prevalence of stress. Evaluated performance revealed that the highest performance observed from RF (accuracy = 0.8972, precision = 0.9241, sensitivity = 0.9250, specificity = 0.8148, area under the ROC curve (AUC) = 0.8715, k-fold accuracy = 0.8983) and the lowest from LR (accuracy = 0.7476, precision = 0.8354, sensitivity = 0.8250, specificity = 0.5185, AUC = 0.7822, k-fold accuracy = 07713) and SVM with polynomial kernel of degree 2 (accuracy = 0.7570, precision = 0.7975, sensitivity = 0.8630, specificity = 0.5294, AUC = 0.7717, k-fold accuracy = 0.7855). Overall, the RF model performs better and authentically predicted stress compared with other ML techniques, including individual and interaction effects of predictors.

CONCLUSION

The machine learning framework can be detected the significant prognostic factors and predicted this psychological problem more accurately, thereby helping the policy-makers, stakeholders, and families to understand and prevent this serious crisis by improving policy-making strategies, mental health promotion, and establishing effective university counseling services.

摘要

背景

与压力相关的心理健康问题是导致全球大学生负担过重的最常见原因之一。许多研究已经对大学生的压力患病率进行了预测,然而,这些分析大多主要使用基本的逻辑回归(LR)模型。作为替代方法,我们使用先进的机器学习(ML)方法来检测显著的风险因素,并预测孟加拉国大学生的压力患病率。

方法

本患病率研究采用问卷调查了来自孟加拉国 28 所不同大学的 355 名学生,问题涉及人体测量、学业、生活方式和与健康相关的信息,这些信息涉及到受访者的压力感知状况(是或否)。Boruta 算法用于确定压力患病率的显著预测因素。使用决策树(DT)、随机森林(RF)、支持向量机(SVM)和 LR 构建预测模型,并使用混淆矩阵、接收者操作特征(ROC)曲线和 k 折交叉验证技术评估其性能。

结果

三分之一的大学生在过去 12 个月内报告存在压力。学生的脉搏率、收缩压和舒张压、睡眠状况、吸烟状况和学业背景被选为预测压力患病率的重要特征。评估结果显示,RF 的性能最高(准确性=0.8972、精确性=0.9241、敏感性=0.9250、特异性=0.8148、ROC 曲线下面积(AUC)=0.8715、k 折准确性=0.8983),LR 的性能最低(准确性=0.7476、精确性=0.8354、敏感性=0.8250、特异性=0.5185、AUC=0.7822、k 折准确性=07713)和 SVM 多项式核度 2(准确性=0.7570、精确性=0.7975、敏感性=0.8630、特异性=0.5294、AUC=0.7717、k 折准确性=0.7855)。总的来说,RF 模型表现更好,能更准确地预测压力,与其他 ML 技术(包括预测因子的个体和交互效应)相比,更具真实性。

结论

机器学习框架可以检测到显著的预后因素,并更准确地预测这种心理问题,从而帮助决策者、利益相关者和家庭通过改善决策制定策略、促进心理健康以及建立有效的大学咨询服务来理解和预防这一严重危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0904/8627029/a697becf3c4d/41043_2021_276_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验