文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习与新兴健康技术在艾滋病病毒检测普及中的应用:2000年至2024年发表研究的文献计量分析

Application of Machine Learning and Emerging Health Technologies in the Uptake of HIV Testing: Bibliometric Analysis of Studies Published From 2000 to 2024.

作者信息

Jaiteh Musa, Phalane Edith, Shiferaw Yegnanew A, Amusa Lateef Babatunde, Twinomurinzi Hossana, Phaswana-Mafuya Refilwe Nancy

机构信息

South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Auckland Park Bunting Road Campus, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa, 27 632376425, 27 115591496.

Department of Statistics, Faculty of Science, University of Johannesburg, Johannesburg, South Africa.

出版信息

Interact J Med Res. 2025 May 22;14:e64829. doi: 10.2196/64829.


DOI:10.2196/64829
PMID:40402556
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12121542/
Abstract

BACKGROUND: The global targets for HIV testing for achieving the Joint United Nations Programme on HIV/AIDS (UNAIDS) 95-95-95 targets are still short. Identifying gaps and opportunities for HIV testing uptake is crucial in fast-tracking the second (initiate people living with HIV on antiretroviral therapy) and third (viral suppression) UNAIDS goals. Machine learning and health technologies can precisely predict high-risk individuals and facilitate more effective and efficient HIV testing methods. Despite this advancement, there exists a research gap regarding the extent to which such technologies are integrated into HIV testing strategies worldwide. OBJECTIVE: The study aimed to examine the characteristics, citation patterns, and contents of published studies applying machine learning and emerging health technologies in HIV testing from 2000 to 2024. METHODS: This bibliometric analysis identified relevant studies using machine learning and emerging health technologies in HIV testing from the Web of Science database using synonymous keywords. The Bibliometrix R package was used to analyze the characteristics, citation patterns, and contents of 266 articles. The VOSviewer software was used to conduct network visualization. The analysis focused on the yearly growth rate, citation analysis, keywords, institutions, countries, authorship, and collaboration patterns. Key themes and topics were driven by the authors' most frequent keywords, which aided the content analysis. RESULTS: The analysis revealed a scientific annual growth rate of 15.68%, with an international coauthorship of 8.22% and an average citation count of 17.47 per document. The most relevant sources were from high-impact journals such as the Journal of Internet Medicine Research, JMIR mHealth and uHealth, JMIR Research Protocols, mHealth, AIDS Care-Psychological and Socio-Medical Aspects of AI, and BMC Public Health, and PLOS One. The United States of America, China, South Africa, the United Kingdom, and Australia produced the highest number of contributions. Collaboration analysis showed significant networks among universities in high-income countries, including the University of North Carolina, Emory University, the University of Michigan, San Diego State University, the University of Pennsylvania, and the London School of Hygiene and Tropical Medicine. The discrepancy highlights missed opportunities in strategic partnerships between high-income and low-income countries. The results further demonstrate that machine learning and health technologies enhance the effective and efficient implementation of innovative HIV testing methods, including HIV self-testing among priority populations. CONCLUSIONS: This study identifies trends and hotspots of machine learning and health technology research in relation to HIV testing across various countries, institutions, journals, and authors. The trends are higher in high-income countries with a greater focus on technology applications for HIV self-testing among young people and priority populations. These insights will inform future researchers about the dynamics of research outputs and help them make scholarly decisions to address research gaps in this field.

摘要

背景:为实现联合国艾滋病规划署(UNAIDS)的95-95-95目标,全球艾滋病检测目标仍未达成。识别艾滋病检测普及方面的差距和机遇对于快速实现UNAIDS的第二个目标(让艾滋病病毒感染者开始接受抗逆转录病毒治疗)和第三个目标(病毒抑制)至关重要。机器学习和健康技术能够精准预测高风险个体,并促进更有效、高效的艾滋病检测方法。尽管有这一进展,但在全球范围内,此类技术在多大程度上被纳入艾滋病检测策略方面仍存在研究空白。 目的:本研究旨在考察2000年至2024年发表的将机器学习和新兴健康技术应用于艾滋病检测的研究的特征、引用模式及内容。 方法:这项文献计量分析使用同义词关键词,从科学网数据库中识别出将机器学习和新兴健康技术应用于艾滋病检测的相关研究。使用Bibliometrix R包分析266篇文章的特征、引用模式及内容。使用VOSviewer软件进行网络可视化。分析重点为年增长率、引用分析、关键词、机构、国家、作者身份及合作模式。关键主题由作者最常用的关键词驱动,这有助于内容分析。 结果:分析显示科学年增长率为15.68%,国际合著率为8.22%,每篇文献平均被引次数为17.47次。最相关的来源是来自高影响力期刊,如《互联网医学研究杂志》《JMIR移动健康与uHealth》《JMIR研究方案》《移动健康》《艾滋病护理——人工智能的心理和社会医学方面》《BMC公共卫生》以及《公共科学图书馆·综合》。美国、中国、南非、英国和澳大利亚的贡献数量最多。合作分析显示高收入国家的大学之间存在重要网络,包括北卡罗来纳大学、埃默里大学、密歇根大学、圣地亚哥州立大学、宾夕法尼亚大学以及伦敦卫生与热带医学院。这种差异凸显了高收入国家和低收入国家在战略伙伴关系方面错失的机遇。结果进一步表明,机器学习和健康技术增强了创新艾滋病检测方法的有效和高效实施,包括在重点人群中开展艾滋病自我检测。 结论:本研究确定了机器学习和健康技术在艾滋病检测方面的研究趋势和热点,涉及不同国家、机构、期刊和作者。这些趋势在高收入国家更为明显,且更侧重于针对年轻人和重点人群的艾滋病自我检测技术应用。这些见解将为未来研究人员提供有关研究产出动态的信息,并帮助他们做出学术决策,以填补该领域的研究空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/3d5bb2922387/ijmr-v14-e64829-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/8629701711c3/ijmr-v14-e64829-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/17daa5a2d781/ijmr-v14-e64829-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/bc3710ede253/ijmr-v14-e64829-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/c0eb7c8ee2e1/ijmr-v14-e64829-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/6c1506d26aca/ijmr-v14-e64829-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/f93ef25b2fce/ijmr-v14-e64829-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/3d5bb2922387/ijmr-v14-e64829-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/8629701711c3/ijmr-v14-e64829-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/17daa5a2d781/ijmr-v14-e64829-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/bc3710ede253/ijmr-v14-e64829-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/c0eb7c8ee2e1/ijmr-v14-e64829-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/6c1506d26aca/ijmr-v14-e64829-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/f93ef25b2fce/ijmr-v14-e64829-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe9/12121542/3d5bb2922387/ijmr-v14-e64829-g007.jpg

相似文献

[1]
Application of Machine Learning and Emerging Health Technologies in the Uptake of HIV Testing: Bibliometric Analysis of Studies Published From 2000 to 2024.

Interact J Med Res. 2025-5-22

[2]
Digital Intervention Services to Promote HIV Self-Testing and Linkage to Care Services: A Bibliometric and Content Analysis-Global Trends and Future Directions.

Public Health Rev. 2024-2-16

[3]
The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023.

J Cheminform. 2025-5-8

[4]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[5]
Exploring the Shift in International Trends in Mobile Health Research From 2000 to 2020: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2021-9-8

[6]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
The Most-Cited Authors Who Published Papers in JMIR mHealth and uHealth Using the Authorship-Weighted Scheme: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2020-5-7

[9]
Unleashing the potential of chatbots in mental health: bibliometric analysis.

Front Psychiatry. 2025-2-4

[10]
Theme Trends and Knowledge Structure on Mobile Health Apps: Bibliometric Analysis.

JMIR Mhealth Uhealth. 2020-7-27

引用本文的文献

[1]
The status of machine learning in HIV testing in South Africa: a qualitative inquiry with stakeholders in Gauteng province.

Front Digit Health. 2025-8-1

[2]
The Application of Machine Learning Algorithms to Predict HIV Testing Using Evidence from the 2002-2017 South African Adult Population-Based Surveys: An HIV Testing Predictive Model.

Trop Med Infect Dis. 2025-6-14

本文引用的文献

[1]
Digital Intervention Services to Promote HIV Self-Testing and Linkage to Care Services: A Bibliometric and Content Analysis-Global Trends and Future Directions.

Public Health Rev. 2024-2-16

[2]
Measuring the performance of computer vision artificial intelligence to interpret images of HIV self-testing results.

Front Public Health. 2024

[3]
Network centrality and HIV prevention service use among people who inject drugs: Findings from a sociometric network cohort in New Delhi, India.

Addiction. 2024-3

[4]
Findings from the Tushirikiane mobile health (mHealth) HIV self-testing pragmatic trial with refugee adolescents and youth living in informal settlements in Kampala, Uganda.

J Int AIDS Soc. 2023-10

[5]
Studies on HIV/AIDS Among Students: Bibliometric Analysis.

Interact J Med Res. 2023-8-4

[6]
Big Data and Infectious Disease Epidemiology: Bibliometric Analysis and Research Agenda.

Interact J Med Res. 2023-3-31

[7]
The Feasibility and Acceptability of an mHealth Conversational Agent Designed to Support HIV Self-testing in South Africa: Cross-sectional Study.

J Med Internet Res. 2022-12-12

[8]
Formative Evaluation of the Acceptance of HIV Prevention Artificial Intelligence Chatbots By Men Who Have Sex With Men in Malaysia: Focus Group Study.

JMIR Form Res. 2022-10-6

[9]
Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques.

Trop Med Infect Dis. 2022-9-5

[10]
A Machine-Learning-Based Risk-Prediction Tool for HIV and Sexually Transmitted Infections Acquisition over the Next 12 Months.

J Clin Med. 2022-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索