Jaiteh Musa, Phalane Edith, Shiferaw Yegnanew A, Amusa Lateef Babatunde, Twinomurinzi Hossana, Phaswana-Mafuya Refilwe Nancy
South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Auckland Park Bunting Road Campus, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa, 27 632376425, 27 115591496.
Department of Statistics, Faculty of Science, University of Johannesburg, Johannesburg, South Africa.
Interact J Med Res. 2025 May 22;14:e64829. doi: 10.2196/64829.
BACKGROUND: The global targets for HIV testing for achieving the Joint United Nations Programme on HIV/AIDS (UNAIDS) 95-95-95 targets are still short. Identifying gaps and opportunities for HIV testing uptake is crucial in fast-tracking the second (initiate people living with HIV on antiretroviral therapy) and third (viral suppression) UNAIDS goals. Machine learning and health technologies can precisely predict high-risk individuals and facilitate more effective and efficient HIV testing methods. Despite this advancement, there exists a research gap regarding the extent to which such technologies are integrated into HIV testing strategies worldwide. OBJECTIVE: The study aimed to examine the characteristics, citation patterns, and contents of published studies applying machine learning and emerging health technologies in HIV testing from 2000 to 2024. METHODS: This bibliometric analysis identified relevant studies using machine learning and emerging health technologies in HIV testing from the Web of Science database using synonymous keywords. The Bibliometrix R package was used to analyze the characteristics, citation patterns, and contents of 266 articles. The VOSviewer software was used to conduct network visualization. The analysis focused on the yearly growth rate, citation analysis, keywords, institutions, countries, authorship, and collaboration patterns. Key themes and topics were driven by the authors' most frequent keywords, which aided the content analysis. RESULTS: The analysis revealed a scientific annual growth rate of 15.68%, with an international coauthorship of 8.22% and an average citation count of 17.47 per document. The most relevant sources were from high-impact journals such as the Journal of Internet Medicine Research, JMIR mHealth and uHealth, JMIR Research Protocols, mHealth, AIDS Care-Psychological and Socio-Medical Aspects of AI, and BMC Public Health, and PLOS One. The United States of America, China, South Africa, the United Kingdom, and Australia produced the highest number of contributions. Collaboration analysis showed significant networks among universities in high-income countries, including the University of North Carolina, Emory University, the University of Michigan, San Diego State University, the University of Pennsylvania, and the London School of Hygiene and Tropical Medicine. The discrepancy highlights missed opportunities in strategic partnerships between high-income and low-income countries. The results further demonstrate that machine learning and health technologies enhance the effective and efficient implementation of innovative HIV testing methods, including HIV self-testing among priority populations. CONCLUSIONS: This study identifies trends and hotspots of machine learning and health technology research in relation to HIV testing across various countries, institutions, journals, and authors. The trends are higher in high-income countries with a greater focus on technology applications for HIV self-testing among young people and priority populations. These insights will inform future researchers about the dynamics of research outputs and help them make scholarly decisions to address research gaps in this field.
背景:为实现联合国艾滋病规划署(UNAIDS)的95-95-95目标,全球艾滋病检测目标仍未达成。识别艾滋病检测普及方面的差距和机遇对于快速实现UNAIDS的第二个目标(让艾滋病病毒感染者开始接受抗逆转录病毒治疗)和第三个目标(病毒抑制)至关重要。机器学习和健康技术能够精准预测高风险个体,并促进更有效、高效的艾滋病检测方法。尽管有这一进展,但在全球范围内,此类技术在多大程度上被纳入艾滋病检测策略方面仍存在研究空白。 目的:本研究旨在考察2000年至2024年发表的将机器学习和新兴健康技术应用于艾滋病检测的研究的特征、引用模式及内容。 方法:这项文献计量分析使用同义词关键词,从科学网数据库中识别出将机器学习和新兴健康技术应用于艾滋病检测的相关研究。使用Bibliometrix R包分析266篇文章的特征、引用模式及内容。使用VOSviewer软件进行网络可视化。分析重点为年增长率、引用分析、关键词、机构、国家、作者身份及合作模式。关键主题由作者最常用的关键词驱动,这有助于内容分析。 结果:分析显示科学年增长率为15.68%,国际合著率为8.22%,每篇文献平均被引次数为17.47次。最相关的来源是来自高影响力期刊,如《互联网医学研究杂志》《JMIR移动健康与uHealth》《JMIR研究方案》《移动健康》《艾滋病护理——人工智能的心理和社会医学方面》《BMC公共卫生》以及《公共科学图书馆·综合》。美国、中国、南非、英国和澳大利亚的贡献数量最多。合作分析显示高收入国家的大学之间存在重要网络,包括北卡罗来纳大学、埃默里大学、密歇根大学、圣地亚哥州立大学、宾夕法尼亚大学以及伦敦卫生与热带医学院。这种差异凸显了高收入国家和低收入国家在战略伙伴关系方面错失的机遇。结果进一步表明,机器学习和健康技术增强了创新艾滋病检测方法的有效和高效实施,包括在重点人群中开展艾滋病自我检测。 结论:本研究确定了机器学习和健康技术在艾滋病检测方面的研究趋势和热点,涉及不同国家、机构、期刊和作者。这些趋势在高收入国家更为明显,且更侧重于针对年轻人和重点人群的艾滋病自我检测技术应用。这些见解将为未来研究人员提供有关研究产出动态的信息,并帮助他们做出学术决策,以填补该领域的研究空白。
JMIR Mhealth Uhealth. 2021-9-8
Front Biosci (Landmark Ed). 2022-8-31
Cochrane Database Syst Rev. 2022-2-1
Front Psychiatry. 2025-2-4
JMIR Mhealth Uhealth. 2020-7-27
Interact J Med Res. 2023-8-4
Interact J Med Res. 2023-3-31