Edelsbrunner Herbert, Nikitenko Anton, Osang Georg
IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
J Geom. 2021;112(1):15. doi: 10.1007/s00022-021-00577-4. Epub 2021 Mar 16.
Given a locally finite set and an integer , we consider the function on the dual of the order- Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order- (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551-559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76-83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90-145, 1998) and Freij (Discrete Math 309:3821-3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on -fold covers with balls in Euclidean space.
给定一个局部有限集和一个整数 ,我们考虑在阶Voronoi镶嵌对偶上的函数,其水平集将α形状的概念从1阶推广到 阶(埃德尔布鲁纳等人,《IEEE信息论汇刊》IT - 29:551 - 559,1983;克拉斯诺谢科夫和波兰丘克,《信息处理快报》114:76 - 83,2014)。虽然从福尔曼(《高等数学》134:90 - 145,1998)和弗雷伊(《离散数学》309:3821 - 3829,2009)的意义上讲,这个函数不一定是广义离散莫尔斯函数,但我们证明它满足类似的性质,以便其增量可以有意义地分为关键步骤和非关键步骤。这个结果扩展到加权点的情况,并为欧几里得空间中球的 重覆盖提供了启示。