Edelsbrunner Herbert, Osang Georg
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Discrete Comput Geom. 2021;65(4):1296-1313. doi: 10.1007/s00454-021-00281-9. Epub 2021 Mar 31.
Given a locally finite and a radius , the - of and consists of all points in that have or more points of within distance . We consider two filtrations-one in obtained by fixing and increasing , and the other in obtained by fixing and decreasing -and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in whose horizontal integer slices are the order- Delaunay mosaics of , and construct a zigzag module of Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
给定一个局部有限集和一个半径,与的 - 由中所有在距离内有或更多个点的点组成。我们考虑两个滤层——一个是通过固定并增大在中得到的,另一个是通过固定并减小在中得到的——并且我们计算这两个滤层的持久图。虽然标准方法足以处理尺度上的滤层,但对于深度上的滤层,我们需要新颖的几何和拓扑概念。特别地,我们在中引入一种菱形平铺,其水平整数切片是的阶德劳内镶嵌,并构造一个德劳内镶嵌的之字形模,它与多重覆盖的持久模同构。