Suppr超能文献

基于深度学习的无免疫信号的GAD67阳性神经元分类

Deep Learning-Based Classification of GAD67-Positive Neurons Without the Immunosignal.

作者信息

Yamashiro Kotaro, Liu Jiayan, Matsumoto Nobuyoshi, Ikegaya Yuji

机构信息

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.

出版信息

Front Neuroanat. 2021 Mar 31;15:643067. doi: 10.3389/fnana.2021.643067. eCollection 2021.

Abstract

Excitatory neurons and GABAergic interneurons constitute neural circuits and play important roles in information processing. In certain brain regions, such as the neocortex and the hippocampus, there are fewer interneurons than excitatory neurons. Interneurons have been quantified via immunohistochemistry, for example, for GAD67, an isoform of glutamic acid decarboxylase. Additionally, the expression level of other proteins varies among cell types. For example, NeuN, a commonly used marker protein for postmitotic neurons, is expressed differently across brain regions and cell classes. Thus, we asked whether GAD67-immunopositive neurons can be detected using the immunofluorescence signals of NeuN and the fluorescence signals of Nissl substances. To address this question, we stained neurons in layers 2/3 of the primary somatosensory cortex (S1) and the primary motor cortex (M1) of mice and manually labeled the neurons as either cell type using GAD67 immunosignals. We then sought to detect GAD67-positive neurons without GAD67 immunosignals using a custom-made deep learning-based algorithm. Using this deep learning-based model, we succeeded in the binary classification of the neurons using Nissl and NeuN signals without referring to the GAD67 signals. Furthermore, we confirmed that our deep learning-based method surpassed classic machine-learning methods in terms of binary classification performance. Combined with the visualization of the hidden layer of our deep learning algorithm, our model provides a new platform for identifying unbiased criteria for cell-type classification.

摘要

兴奋性神经元和γ-氨基丁酸能中间神经元构成神经回路,并在信息处理中发挥重要作用。在某些脑区,如大脑新皮层和海马体,中间神经元的数量比兴奋性神经元少。中间神经元已通过免疫组织化学进行定量,例如针对谷氨酸脱羧酶的一种同工型GAD67。此外,其他蛋白质的表达水平在不同细胞类型中有所不同。例如,NeuN是一种常用于有丝分裂后神经元的标记蛋白,在不同脑区和细胞类别中的表达有所不同。因此,我们询问是否可以使用NeuN的免疫荧光信号和尼氏物质的荧光信号来检测GAD67免疫阳性神经元。为了解决这个问题,我们对小鼠初级体感皮层(S1)和初级运动皮层(M1)的第2/3层神经元进行染色,并使用GAD67免疫信号将神经元手动标记为两种细胞类型。然后,我们试图使用基于深度学习的定制算法,在没有GAD67免疫信号的情况下检测GAD67阳性神经元。使用这个基于深度学习的模型,我们成功地在不参考GAD67信号的情况下,利用尼氏和NeuN信号对神经元进行了二元分类。此外,我们证实,在二元分类性能方面,我们基于深度学习的方法优于经典机器学习方法。结合我们深度学习算法隐藏层的可视化,我们的模型为确定细胞类型分类的无偏标准提供了一个新平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc75/8044854/76401db2117d/fnana-15-643067-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验