Suppr超能文献

加权相关基因网络分析揭示非梗阻性无精子症的新潜在机制和生物标志物。

Weighted Correlation Gene Network Analysis Reveals New Potential Mechanisms and Biomarkers in Non-obstructive Azoospermia.

作者信息

Dong Meng, Li Hao, Zhang Xue, Tan Jichun

机构信息

Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.

Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.

出版信息

Front Genet. 2021 Mar 31;12:617133. doi: 10.3389/fgene.2021.617133. eCollection 2021.

Abstract

Non-obstructive azoospermia (NOA) denotes a severe form of male infertility, whose etiology is still poorly understood. This is mainly due to limited knowledge on the molecular mechanisms that lead to spermatogenesis failure. In this study, we acquired microarray data from GEO DataSets and identified differentially expressed genes using the limma package in R. We identified 1,261 differentially expressed genes between non-obstructive and obstructive azoospermia. Analysis of their possible biological functions and related signaling pathways using the cluster profiler package revealed an enrichment of genes involved in germ cell development, cilium organization, and oocyte meiosis. Immune infiltration analysis indicated that macrophages were the most significant immune component of NOA, cooperating with mast cells and natural killer cells. The weighted gene coexpression network analysis algorithm generated three related functional modules, which correlated closely with clinical parameters derived from histopathological subtypes of NOA. The resulting data enabled the construction of a protein-protein interaction network of these three modules, with CDK1, CDC20, CCNB1, CCNB2, and MAD2L1 identified as hub genes. This study provides the basis for further investigation of the molecular mechanism underlying NOA, as well as indications about potential biomarkers and therapeutic targets of NOA. Finally, using tissues containing different tissue types for differential expression analysis can reflect the expression differences in different tissues to a certain extent. But this difference in expression is only related and not causal. The specific causality needs to be verified later.

摘要

非梗阻性无精子症(NOA)是男性不育的一种严重形式,其病因仍知之甚少。这主要是由于对导致精子发生失败的分子机制了解有限。在本研究中,我们从基因表达综合数据库(GEO)数据集中获取了微阵列数据,并使用R语言中的limma软件包鉴定了差异表达基因。我们在非梗阻性和梗阻性无精子症之间鉴定出1261个差异表达基因。使用clusterProfiler软件包对其可能的生物学功能和相关信号通路进行分析,结果显示参与生殖细胞发育、纤毛组织形成和卵母细胞减数分裂的基因显著富集。免疫浸润分析表明,巨噬细胞是NOA中最主要的免疫成分,与肥大细胞和自然杀伤细胞协同作用。加权基因共表达网络分析算法生成了三个相关的功能模块,这些模块与源自NOA组织病理学亚型的临床参数密切相关。所得数据使得能够构建这三个模块的蛋白质-蛋白质相互作用网络,其中细胞周期蛋白依赖性激酶1(CDK1)、细胞分裂周期蛋白20(CDC20)、细胞周期蛋白B1(CCNB1)、细胞周期蛋白B2(CCNB2)和有丝分裂后期促进因子2(MAD2L1)被鉴定为核心基因。本研究为进一步探究NOA潜在的分子机制提供了基础,同时也为NOA的潜在生物标志物和治疗靶点提供了线索。最后,使用包含不同组织类型的组织进行差异表达分析,在一定程度上能够反映不同组织中的表达差异。但这种表达差异仅具有相关性而非因果关系。具体的因果关系还需后续验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb8/8044582/c2d85ca9bc51/fgene-12-617133-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验