Suppr超能文献

3D 打印酶嵌入塑料。

3D-Printed Enzyme-Embedded Plastics.

机构信息

Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, New Zealand.

出版信息

Biomacromolecules. 2021 May 10;22(5):1999-2009. doi: 10.1021/acs.biomac.1c00105. Epub 2021 Apr 18.

Abstract

A simple and environmentally friendly approach toward the thermoplastic processing of rapidly degradable plastic-enzyme composites using three-dimensional (3D) printing techniques is described. Polycaprolactone/Amano lipase (PCL/AL) composite films (10 mm × 10 mm; height [] = ∼400 μm) with an AL loading of 0.1, 1.0, and 5.0% were prepared via 3D printing techniques that entail direct mixing in the solid state and thermal layer-by-layer extrusion. It was found that AL can tolerate processing temperatures up to 130 °C in the solid-state for 60 min without loss of enzymatic activity. The composites were degraded in phosphate buffer (8 mg/mL, composite to buffer) for 7 days at 37 °C and the resulting average percent total weight loss (WL) was found to be 5.2, 92.9, and 100%, for the 0.1, 1.0, and 5.0% films, respectively. The degradation rates of PCL/AL composites were found to be faster than AL applied externally in the buffer. Thicker PCL/AL 1.0% films (10 mm × 10 mm; = ∼500 μm) were also degraded over a 7 day period to examine how the weight loss occurs over time with 3.0, 18.1, 36.4, 46.4, and 70.2% weight loss for days 1, 2, 3, 4, and 7, respectively. Differential scanning calorimetry (DSC) analysis shows that the film's percent crystallinity () increases over time with = 46.5 for day 0 and 53.1% for day 7. Scanning electron microscopy (SEM) analysis found that film erosion begins at the surface and that water can penetrate the interior via surface pores activating the enzymes embedded in the film. Controlled release experiments utilizing dye-loaded PCL/AL/dye (AL = 1.0%; dye = 0.1%) composites were degraded over a 7 day period with the bulk of the dye released by the fourth day. The PCL/AL multimaterial objects containing AL-resistant polylactic acid (PLA) were also printed and degraded to demonstrate the application of this material on more complex structures.

摘要

描述了一种使用三维(3D)打印技术对可快速降解塑料-酶复合材料进行热塑性加工的简单且环保的方法。通过 3D 打印技术制备了聚己内酯/阿曼诺脂肪酶(PCL/AL)复合膜(10mm×10mm;高度[]=∼400μm),其中 AL 负载量为 0.1%、1.0%和 5.0%,该技术需要在固态下直接混合和热逐层挤出。结果发现,AL 在固态下可耐受高达 130°C 的加工温度 60 分钟而不失活。将复合材料在 37°C 的磷酸盐缓冲液(8mg/mL,复合材料与缓冲液)中降解 7 天,发现 0.1%、1.0%和 5.0%的薄膜的总重量损失(WL)的平均百分比分别为 5.2%、92.9%和 100%。发现 PCL/AL 复合材料的降解速度快于外部应用于缓冲液中的 AL。还对较厚的 PCL/AL 1.0%薄膜(10mm×10mm;=∼500μm)进行了 7 天的降解,以检查随着时间的推移重量损失如何发生,分别在第 1、2、3、4 和 7 天观察到 3.0%、18.1%、36.4%、46.4%和 70.2%的重量损失。差示扫描量热法(DSC)分析表明,随着时间的推移,薄膜的结晶度()增加,第 0 天为 46.5%,第 7 天为 53.1%。扫描电子显微镜(SEM)分析发现,薄膜的侵蚀始于表面,水可以通过表面孔渗透到内部,从而激活嵌入薄膜中的酶。使用负载有染料的 PCL/AL/染料(AL=1.0%;染料=0.1%)复合材料进行了 7 天的控释实验,大部分染料在第四天释放。还打印并降解了含有耐 AL 的聚乳酸(PLA)的 PCL/AL 多材料物体,以展示该材料在更复杂结构上的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验