Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
Microb Biotechnol. 2023 Feb;16(2):195-217. doi: 10.1111/1751-7915.14135. Epub 2022 Sep 13.
Global economies depend on the use of fossil-fuel-based polymers with 360-400 million metric tons of synthetic polymers being produced per year. Unfortunately, an estimated 60% of the global production is disposed into the environment. Within this framework, microbiologists have tried to identify plastic-active enzymes over the past decade. Until now, this research has largely failed to deliver functional biocatalysts acting on the commodity polymers such as polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), ether-based polyurethane (PUR), polyamide (PA), polystyrene (PS) and synthetic rubber (SR). However, few enzymes are known to act on low-density and low-crystalline (amorphous) polyethylene terephthalate (PET) and ester-based PUR. These above-mentioned polymers represent >95% of all synthetic plastics produced. Therefore, the main challenge microbiologists are currently facing is in finding polymer-active enzymes targeting the majority of fossil-fuel-based plastics. However, identifying plastic-active enzymes either to implement them in biotechnological processes or to understand their potential role in nature is an emerging research field. The application of these enzymes is still in its infancy. Here, we summarize the current knowledge on microbial plastic-active enzymes, their global distribution and potential impact on plastic degradation in industrial processes and nature. We further outline major challenges in finding novel plastic-active enzymes, optimizing known ones by synthetic approaches and problems arising through falsely annotated and unfiltered use of database entries. Finally, we highlight potential biotechnological applications and possible re- and upcycling concepts using microorganisms.
全球经济依赖于使用基于化石燃料的聚合物,每年生产的合成聚合物达 3.6 亿至 4 亿吨。不幸的是,据估计全球有 60%的产量被丢弃到环境中。在这一框架内,微生物学家在过去十年中试图鉴定塑料活性酶。到目前为止,这项研究在很大程度上未能提供对商品聚合物(如聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、醚基聚氨酯(PUR)、聚酰胺(PA)、聚苯乙烯(PS)和合成橡胶(SR))起作用的功能性生物催化剂。然而,已知只有少数酶能作用于低密度和低结晶度(无定形)的聚对苯二甲酸乙二醇酯(PET)和酯基 PUR。上述聚合物占所有合成塑料产量的>95%。因此,微生物学家目前面临的主要挑战是寻找针对大多数基于化石燃料的塑料的聚合物活性酶。然而,鉴定具有塑料活性的酶,无论是将其应用于生物技术过程中,还是了解其在自然界中的潜在作用,都是一个新兴的研究领域。这些酶的应用仍处于起步阶段。在这里,我们总结了微生物塑料活性酶的最新知识,包括它们的全球分布以及在工业过程和自然中对塑料降解的潜在影响。我们进一步概述了寻找新型塑料活性酶的主要挑战,通过合成方法优化已知的酶,并通过错误注释和未经筛选地使用数据库条目来解决出现的问题。最后,我们强调了利用微生物进行潜在生物技术应用和可能的再利用和升级概念。