Suppr超能文献

粗粒化模拟 DNA 揭示粘性末端结合的角度依赖性。

Coarse-Grained Simulations of DNA Reveal Angular Dependence of Sticky-End Binding.

机构信息

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

J Phys Chem B. 2021 Apr 29;125(16):4016-4024. doi: 10.1021/acs.jpcb.1c00432. Epub 2021 Apr 19.

Abstract

Annealing between sticky ends of DNA is an intermediate step in ligation. It can also be utilized to program specific binding sites for DNA tile and origami assembly. This reaction is generally understood as a bimolecular reaction dictated by the local concentration of the sticky ends. Its dependence on the relative orientation between the sticky ends, however, is less understood. Here we report on the interactions between DNA sticky ends using the coarse-grained oxDNA model; specifically, we consider how the orientational alignment of the double-stranded DNA (dsDNA) segments affects the time required for the sticky ends to bind, τ. We specify the orientation of the dsDNA segments with three parameters: θ, which measures the angle between the helical axes, and ϕ and ϕ, which measure rotations of each strand around the helical axis. We find that the binding time depends strongly on both θ and ϕ: ∼20-fold change with θ and 10-fold change with ϕ. The binding time is the fastest when the helical axes of duplexes are pointing toward each other and the sticky ends protrude from the farthest two points. Our result is relevant for predicting hybridization efficiency of sticky ends that are rotationally restricted.

摘要

DNA 粘性末端的退火是连接的中间步骤。它也可用于为 DNA 瓦片和折纸组装编程特定的结合位点。该反应通常被理解为由粘性末端的局部浓度决定的双分子反应。然而,其对粘性末端之间相对取向的依赖性理解较少。在这里,我们使用粗粒 oxDNA 模型报告 DNA 粘性末端之间的相互作用;具体而言,我们考虑双链 DNA(dsDNA)片段的取向如何影响粘性末端结合所需的时间,τ。我们用三个参数指定 dsDNA 片段的取向:θ,它测量螺旋轴之间的角度,以及 ϕ 和 ϕ,它们测量每个链围绕螺旋轴的旋转。我们发现结合时间强烈依赖于θ和ϕ:θ变化约 20 倍,ϕ变化约 10 倍。当双链的螺旋轴指向彼此并且粘性末端从最远的两点突出时,结合时间最快。我们的结果与预测旋转受限的粘性末端杂交效率有关。

相似文献

1
Coarse-Grained Simulations of DNA Reveal Angular Dependence of Sticky-End Binding.
J Phys Chem B. 2021 Apr 29;125(16):4016-4024. doi: 10.1021/acs.jpcb.1c00432. Epub 2021 Apr 19.
3
Strength of DNA sticky end links.
Biomacromolecules. 2014 Jan 13;15(1):143-9. doi: 10.1021/bm401425k. Epub 2013 Dec 12.
4
Determinants of cyclization-decyclization kinetics of short DNA with sticky ends.
Nucleic Acids Res. 2020 May 21;48(9):5147-5156. doi: 10.1093/nar/gkaa207.
5
Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.
ACS Nano. 2017 Sep 26;11(9):9370-9381. doi: 10.1021/acsnano.7b04845. Epub 2017 Aug 22.
6
NP-Sticky: a web server for optimizing DNA ligation with non-palindromic sticky ends.
J Mol Biol. 2014 Apr 17;426(8):1861-9. doi: 10.1016/j.jmb.2014.02.003. Epub 2014 Feb 9.
7
Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications.
ACS Nano. 2019 Jul 23;13(7):7957-7965. doi: 10.1021/acsnano.9b02430. Epub 2019 Jul 2.
8
A DNA Origami Platform for Single-Pair Förster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation.
J Am Chem Soc. 2020 Jan 15;142(2):815-825. doi: 10.1021/jacs.9b09093. Epub 2020 Jan 2.
9
Functionalizing designer DNA crystals with a triple-helical veneer.
Angew Chem Int Ed Engl. 2014 Apr 7;53(15):3979-82. doi: 10.1002/anie.201309914. Epub 2014 Mar 11.
10
Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA.
J Am Chem Soc. 2011 Mar 23;133(11):3843-5. doi: 10.1021/ja1108886. Epub 2011 Feb 28.

引用本文的文献

1
Weak tension accelerates hybridization and dehybridization of short oligonucleotides.
Nucleic Acids Res. 2023 Apr 24;51(7):3030-3040. doi: 10.1093/nar/gkad118.

本文引用的文献

1
Thermodynamics of DNA Hybridization from Atomistic Simulations.
J Phys Chem B. 2021 Jan 28;125(3):771-779. doi: 10.1021/acs.jpcb.0c09237. Epub 2021 Jan 12.
2
Interactions between identical DNA double helices.
Phys Rev E. 2020 Mar;101(3-1):032414. doi: 10.1103/PhysRevE.101.032414.
3
Determinants of cyclization-decyclization kinetics of short DNA with sticky ends.
Nucleic Acids Res. 2020 May 21;48(9):5147-5156. doi: 10.1093/nar/gkaa207.
4
A DNA Origami Platform for Single-Pair Förster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation.
J Am Chem Soc. 2020 Jan 15;142(2):815-825. doi: 10.1021/jacs.9b09093. Epub 2020 Jan 2.
5
Self-Assembly of DNA Origami Heterodimers in High Yields and Analysis of the Involved Mechanisms.
Small. 2019 Dec;15(51):e1902979. doi: 10.1002/smll.201902979. Epub 2019 Nov 21.
7
Coarse-grained modelling of the structural properties of DNA origami.
Nucleic Acids Res. 2019 Feb 20;47(3):1585-1597. doi: 10.1093/nar/gky1304.
8
Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
Nano Lett. 2018 Nov 14;18(11):6703-6709. doi: 10.1021/acs.nanolett.8b02093. Epub 2018 Oct 29.
9
Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA.
J Chem Theory Comput. 2018 Jul 10;14(7):3763-3779. doi: 10.1021/acs.jctc.8b00091. Epub 2018 Jun 26.
10
How cells ensure correct repair of DNA double-strand breaks.
J Biol Chem. 2018 Jul 6;293(27):10502-10511. doi: 10.1074/jbc.TM118.000371. Epub 2018 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验