Suppr超能文献

用于检测早期卵巢癌的多蛋白分类器的开发。

Development of a Multiprotein Classifier for the Detection of Early Stage Ovarian Cancer.

作者信息

Boylan Kristin L M, Petersen Ashley, Starr Timothy K, Pu Xuan, Geller Melissa A, Bast Robert C, Lu Karen H, Cavallaro Ugo, Connolly Denise C, Elias Kevin M, Cramer Daniel W, Pejovic Tanja, Skubitz Amy P N

机构信息

Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Cancers (Basel). 2022 Jun 23;14(13):3077. doi: 10.3390/cancers14133077.

Abstract

BACKGROUND

Individual serum biomarkers are neither adequately sensitive nor specific for use in screening the general population for ovarian cancer. The purpose of this study was to develop a multiprotein classifier to detect the early stages of ovarian cancer, when it is most treatable.

METHODS

The Olink Proseek Multiplex Oncology II panel was used to simultaneously quantify the expression levels of 92 cancer-related proteins in sera.

RESULTS

In the discovery phase, we generated a multiprotein classifier that included CA125, HE4, ITGAV, and SEZ6L, based on an analysis of sera from 116 women with early stage ovarian cancer and 336 age-matched healthy women. CA125 alone achieved a sensitivity of 87.9% at a specificity of 95%, while the multiprotein classifier resulted in an increased sensitivity of 91.4%, while holding the specificity fixed at 95%. The performance of the multiprotein classifier was validated in a second cohort comprised of 192 women with early stage ovarian cancer and 467 age-matched healthy women. The sensitivity at 95% specificity increased from 74.5% (CA125 alone) to 79.2% with the multiprotein classifier. In addition, the multiprotein classifier had a sensitivity of 95.1% at 98% specificity for late stage ovarian cancer samples and correctly classified 80.5% of the benign samples using the 98% specificity cutpoint.

CONCLUSIONS

The inclusion of the proteins HE4, ITGAV, and SEZ6L improved the sensitivity and specificity of CA125 alone for the detection of early stages of ovarian cancer in serum samples. Furthermore, we identified several proteins that may be novel biomarkers of early stage ovarian cancer.

摘要

背景

个体血清生物标志物对于在普通人群中筛查卵巢癌而言,其敏感性和特异性均不足。本研究的目的是开发一种多蛋白分类器,用于检测卵巢癌最具可治性的早期阶段。

方法

使用Olink Proseek多重肿瘤学II检测板同时定量血清中92种癌症相关蛋白的表达水平。

结果

在发现阶段,基于对116例早期卵巢癌女性和336例年龄匹配的健康女性血清的分析,我们生成了一个包含CA125、HE4、ITGAV和SEZ6L的多蛋白分类器。单独使用CA125时,在特异性为95%的情况下,敏感性达到87.9%,而多蛋白分类器在特异性保持为95%的同时,敏感性提高到了91.4%。在由192例早期卵巢癌女性和467例年龄匹配的健康女性组成的第二个队列中,对多蛋白分类器的性能进行了验证。在特异性为95%时,敏感性从单独使用CA125时的74.5%提高到了使用多蛋白分类器时的79.2%。此外,多蛋白分类器对晚期卵巢癌样本在特异性为98%时的敏感性为95.1%,并使用98%的特异性切点正确分类了80.5%的良性样本。

结论

纳入HE4、ITGAV和SEZ6L蛋白提高了单独使用CA125检测血清样本中卵巢癌早期阶段的敏感性和特异性。此外,我们还鉴定出了几种可能是早期卵巢癌新型生物标志物的蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e9/9264950/9701427a9d4a/cancers-14-03077-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验