IEEE Trans Med Imaging. 2021 Sep;40(9):2233-2245. doi: 10.1109/TMI.2021.3074033. Epub 2021 Aug 31.
Reliable motion estimation and strain analysis using 3D+ time echocardiography (4DE) for localization and characterization of myocardial injury is valuable for early detection and targeted interventions. However, motion estimation is difficult due to the low-SNR that stems from the inherent image properties of 4DE, and intelligent regularization is critical for producing reliable motion estimates. In this work, we incorporated the notion of domain adaptation into a supervised neural network regularization framework. We first propose a semi-supervised Multi-Layered Perceptron (MLP) network with biomechanical constraints for learning a latent representation that is shown to have more physiologically plausible displacements. We extended this framework to include a supervised loss term on synthetic data and showed the effects of biomechanical constraints on the network's ability for domain adaptation. We validated the semi-supervised regularization method on in vivo data with implanted sonomicrometers. Finally, we showed the ability of our semi-supervised learning regularization approach to identify infarct regions using estimated regional strain maps with good agreement to manually traced infarct regions from postmortem excised hearts.
利用 3D+时间超声心动图(4DE)进行可靠的运动估计和应变分析,有助于定位和特征化心肌损伤,从而实现早期检测和靶向干预。然而,由于 4DE 固有的图像特性导致信噪比低,因此运动估计具有一定难度,而智能正则化对于生成可靠的运动估计至关重要。在这项工作中,我们将域适应的概念融入到有监督的神经网络正则化框架中。我们首先提出了一种具有生物力学约束的半监督多层感知机(MLP)网络,用于学习具有更符合生理的位移的潜在表示。我们将该框架扩展到包括对合成数据的有监督损失项,并展示了生物力学约束对网络进行域适应的能力的影响。我们在植入超声心动描记器的体内数据上验证了半监督正则化方法。最后,我们展示了我们的半监督学习正则化方法的能力,该方法能够使用估计的区域应变图来识别梗死区域,与从死后切除的心脏手动追踪的梗死区域具有很好的一致性。