Suppr超能文献

一种用于超声心动图中左心室分割与运动跟踪的半监督联合学习方法。

A SEMI-SUPERVISED JOINT LEARNING APPROACH TO LEFT VENTRICULAR SEGMENTATION AND MOTION TRACKING IN ECHOCARDIOGRAPHY.

作者信息

Ta Kevinminh, Ahn Shawn S, Lu Allen, Stendahl John C, Sinusas Albert J, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

EchoNous Inc., Redmond, WA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1734-1737. doi: 10.1109/ISBI45749.2020.9098664. Epub 2020 May 22.

Abstract

Accurate interpretation and analysis of echocardiography is important in assessing cardiovascular health. However, motion tracking often relies on accurate segmentation of the myocardium, which can be difficult to obtain due to inherent ultrasound properties. In order to address this limitation, we propose a semi-supervised joint learning network that exploits overlapping features in motion tracking and segmentation. The network simultaneously trains two branches: one for motion tracking and one for segmentation. Each branch learns to extract features relevant to their respective tasks and shares them with the other. Learned motion estimations propagate a manually segmented mask through time, which is used to guide future segmentation predictions. Physiological constraints are introduced to enforce realistic cardiac behavior. Experimental results on synthetic and in vivo canine 2D+t echocardiographic sequences outperform some competing methods in both tasks.

摘要

准确解读和分析超声心动图对于评估心血管健康至关重要。然而,运动跟踪通常依赖于心肌的精确分割,由于超声的固有特性,这可能难以实现。为了解决这一局限性,我们提出了一种半监督联合学习网络,该网络利用运动跟踪和分割中的重叠特征。该网络同时训练两个分支:一个用于运动跟踪,一个用于分割。每个分支学习提取与其各自任务相关的特征,并与另一个分支共享这些特征。学习到的运动估计通过时间传播手动分割的掩码,该掩码用于指导未来的分割预测。引入生理约束以确保心脏行为符合实际情况。在合成和体内犬类二维加时间超声心动图序列上的实验结果在这两项任务中均优于一些竞争方法。

相似文献

1
A SEMI-SUPERVISED JOINT LEARNING APPROACH TO LEFT VENTRICULAR SEGMENTATION AND MOTION TRACKING IN ECHOCARDIOGRAPHY.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1734-1737. doi: 10.1109/ISBI45749.2020.9098664. Epub 2020 May 22.
2
A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:468-477. doi: 10.1007/978-3-030-59725-2_45. Epub 2020 Sep 29.
3
SHAPE-REGULARIZED UNSUPERVISED LEFT VENTRICULAR MOTION NETWORK WITH SEGMENTATION CAPABILITY IN 3D+TIME ECHOCARDIOGRAPHY.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:536-540. doi: 10.1109/isbi48211.2021.9433888. Epub 2021 May 25.
4
Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography Using Multi-task Learning.
Stat Atlases Comput Models Heart. 2022;13131:123-131. doi: 10.1007/978-3-030-93722-5_14. Epub 2022 Jan 14.
5
Unsupervised Motion Tracking of Left Ventricle in Echocardiography.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11319. Epub 2020 Mar 16.
6
Co-learning of appearance and shape for precise ejection fraction estimation from echocardiographic sequences.
Med Image Anal. 2023 Feb;84:102686. doi: 10.1016/j.media.2022.102686. Epub 2022 Nov 15.
7
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
9
Semi-Supervised 3D Medical Image Segmentation Based on Dual-Task Consistent Joint Learning and Task-Level Regularization.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jul-Aug;20(4):2457-2467. doi: 10.1109/TCBB.2022.3144428. Epub 2023 Aug 9.
10
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.

引用本文的文献

1
Multi-Task Learning for Motion Analysis and Segmentation in 3D Echocardiography.
IEEE Trans Med Imaging. 2024 May;43(5):2010-2020. doi: 10.1109/TMI.2024.3355383. Epub 2024 May 2.
3
Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography Using Multi-task Learning.
Stat Atlases Comput Models Heart. 2022;13131:123-131. doi: 10.1007/978-3-030-93722-5_14. Epub 2022 Jan 14.
4
Advanced Ultrasound and Photoacoustic Imaging in Cardiology.
Sensors (Basel). 2021 Nov 28;21(23):7947. doi: 10.3390/s21237947.
5
Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:348-357. doi: 10.1007/978-3-030-87193-2_33. Epub 2021 Sep 21.
6
SHAPE-REGULARIZED UNSUPERVISED LEFT VENTRICULAR MOTION NETWORK WITH SEGMENTATION CAPABILITY IN 3D+TIME ECHOCARDIOGRAPHY.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:536-540. doi: 10.1109/isbi48211.2021.9433888. Epub 2021 May 25.
7
A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:468-477. doi: 10.1007/978-3-030-59725-2_45. Epub 2020 Sep 29.

本文引用的文献

1
Learning-Based Regularization for Cardiac Strain Analysis via Domain Adaptation.
IEEE Trans Med Imaging. 2021 Sep;40(9):2233-2245. doi: 10.1109/TMI.2021.3074033. Epub 2021 Aug 31.
2
Flow network tracking for spatiotemporal and periodic point matching: Applied to cardiac motion analysis.
Med Image Anal. 2019 Jul;55:116-135. doi: 10.1016/j.media.2019.04.007. Epub 2019 Apr 18.
3
Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association.
Circulation. 2018 Mar 20;137(12):e67-e492. doi: 10.1161/CIR.0000000000000558. Epub 2018 Jan 31.
4
Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.
IEEE Trans Med Imaging. 2018 Feb;37(2):384-395. doi: 10.1109/TMI.2017.2743464. Epub 2017 Sep 26.
5
A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database.
IEEE Trans Med Imaging. 2015 Jul;34(7):1436-1451. doi: 10.1109/TMI.2015.2396632. Epub 2015 Jan 27.
6
Contour tracking in echocardiographic sequences via sparse representation and dictionary learning.
Med Image Anal. 2014 Feb;18(2):253-71. doi: 10.1016/j.media.2013.10.012. Epub 2013 Nov 6.
8
Estimation of 3-D left ventricular deformation from medical images using biomechanical models.
IEEE Trans Med Imaging. 2002 Jul;21(7):786-800. doi: 10.1109/TMI.2002.801163.
9
Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences.
IEEE Trans Med Imaging. 2000 Jan;19(1):36-50. doi: 10.1109/42.832958.
10
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验