Suppr超能文献

一种用于超声心动图中左心室分割与运动跟踪的半监督联合学习方法。

A SEMI-SUPERVISED JOINT LEARNING APPROACH TO LEFT VENTRICULAR SEGMENTATION AND MOTION TRACKING IN ECHOCARDIOGRAPHY.

作者信息

Ta Kevinminh, Ahn Shawn S, Lu Allen, Stendahl John C, Sinusas Albert J, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

EchoNous Inc., Redmond, WA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1734-1737. doi: 10.1109/ISBI45749.2020.9098664. Epub 2020 May 22.

Abstract

Accurate interpretation and analysis of echocardiography is important in assessing cardiovascular health. However, motion tracking often relies on accurate segmentation of the myocardium, which can be difficult to obtain due to inherent ultrasound properties. In order to address this limitation, we propose a semi-supervised joint learning network that exploits overlapping features in motion tracking and segmentation. The network simultaneously trains two branches: one for motion tracking and one for segmentation. Each branch learns to extract features relevant to their respective tasks and shares them with the other. Learned motion estimations propagate a manually segmented mask through time, which is used to guide future segmentation predictions. Physiological constraints are introduced to enforce realistic cardiac behavior. Experimental results on synthetic and in vivo canine 2D+t echocardiographic sequences outperform some competing methods in both tasks.

摘要

准确解读和分析超声心动图对于评估心血管健康至关重要。然而,运动跟踪通常依赖于心肌的精确分割,由于超声的固有特性,这可能难以实现。为了解决这一局限性,我们提出了一种半监督联合学习网络,该网络利用运动跟踪和分割中的重叠特征。该网络同时训练两个分支:一个用于运动跟踪,一个用于分割。每个分支学习提取与其各自任务相关的特征,并与另一个分支共享这些特征。学习到的运动估计通过时间传播手动分割的掩码,该掩码用于指导未来的分割预测。引入生理约束以确保心脏行为符合实际情况。在合成和体内犬类二维加时间超声心动图序列上的实验结果在这两项任务中均优于一些竞争方法。

相似文献

引用本文的文献

1
5
Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography.用于三维超声心动图左心室分割的多帧注意力网络
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12901:348-357. doi: 10.1007/978-3-030-87193-2_33. Epub 2021 Sep 21.

本文引用的文献

1
Learning-Based Regularization for Cardiac Strain Analysis via Domain Adaptation.基于学习的域自适应心肌应变分析正则化方法。
IEEE Trans Med Imaging. 2021 Sep;40(9):2233-2245. doi: 10.1109/TMI.2021.3074033. Epub 2021 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验