Suppr超能文献

基于混沌检测技术的 SSVEP-EEG 的弱特征提取和强噪声抑制。

Weak Feature Extraction and Strong Noise Suppression for SSVEP-EEG Based on Chaotic Detection Technology.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:862-871. doi: 10.1109/TNSRE.2021.3073918. Epub 2021 May 13.

Abstract

Brain computer interface (BCI) is a novel communication method that does not rely on the normal neural pathway between the brain and muscle of human. It can transform mental activities into relevant commands to control external equipment and establish direct communication pathway. Among different paradigms, steady-state visual evoked potential (SSVEP) is widely used due to its certain periodicity and stability of control. However, electroencephalogram (EEG) of SSVEP is extremely weak and companied with multi-scale and strong noise. Existing algorithms for classification are based on the principle of template matching and spatial filtering, which cannot obtain satisfied performance of feature extraction under the multi-scale noise. Especially for the subjects produce weak response for external stimuli in EEG representation, i.e., BCI-Illiteracy subject, traditional algorithms are difficult to recognize the internal patterns of brain. To address this issue, a novel method based on Chaos theory is proposed to extract feature of SSVEP. The rule of this method is applying the peculiarity of nonlinear dynamics system to detect feature of SSVEP by judging the state changes of chaotic systems after adding weak EEG. To evaluate the validity of proposed method, this research recruit 32 subjects to participate the experiment. All subjects are divided into two groups according to the preliminary classification accuracy (mean acc >70% or < 70%) by canonical correlation analysis and we define the accuracy above 70% as group A (normal subjects), below 70% as group B (BCI-Illiteracy). Then, the classification accuracy and information transmission rate of two groups are verified using Chaotic theory. Experimental results show that all classification methods using in our study achieve good performance for normal subjects while chaos obtain excellent performance and significant improvements than traditional methods for BCI-Illiteracy.

摘要

脑机接口(BCI)是一种新颖的通信方法,它不依赖于大脑和肌肉之间的正常神经通路。它可以将心理活动转化为相关命令,以控制外部设备并建立直接的通信途径。在不同的范式中,由于其具有一定的周期性和控制稳定性,稳态视觉诱发电位(SSVEP)得到了广泛的应用。然而,SSVEP 的脑电图(EEG)非常微弱,并且伴有多尺度和强噪声。现有的分类算法基于模板匹配和空间滤波的原理,在多尺度噪声下无法获得满意的特征提取性能。特别是对于在 EEG 表示中对外界刺激产生微弱反应的受试者,即 BCI 文盲受试者,传统算法难以识别大脑的内部模式。针对这一问题,提出了一种基于混沌理论的 SSVEP 特征提取新方法。该方法的原理是利用非线性动力学系统的特性,通过判断混沌系统在加入弱 EEG 后的状态变化来检测 SSVEP 的特征。为了评估所提出方法的有效性,本研究招募了 32 名受试者参与实验。所有受试者根据初步分类准确率(平均准确率>70%或<70%)分为两组,通过典型相关分析,我们将准确率>70%定义为组 A(正常受试者),准确率<70%定义为组 B(BCI 文盲)。然后,使用混沌理论验证两组的分类准确率和信息传输率。实验结果表明,我们研究中使用的所有分类方法在正常受试者中均能取得良好的性能,而混沌方法在 BCI 文盲受试者中表现出优异的性能和显著的改进,优于传统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验