Suppr超能文献

机器学习与实验揭示的钯银催化剂表面结构及其对乙炔半加氢的影响

Surface Structures of PdAg Catalyst and Their Influence on Acetylene Semihydrogenation Revealed by Machine Learning and Experiment.

作者信息

Li Xiao-Tian, Chen Lin, Shang Cheng, Liu Zhi-Pan

机构信息

Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.

出版信息

J Am Chem Soc. 2021 Apr 28;143(16):6281-6292. doi: 10.1021/jacs.1c02471. Epub 2021 Apr 20.

Abstract

PdAg alloy is an industrial catalyst for acetylene-selective hydrogenation in excess ethene. While significant efforts have been devoted to increase the selectivity, there has been little progress in the catalyst performance at low temperatures. Here by combining a machine-learning atomic simulation and catalysis experiment, we clarify the surface status of PdAg alloy catalyst under the reaction conditions and screen out a rutile-TiO supported PdAg catalyst with high performance: i.e., 85% selectivity at >96% acetylene conversion over a 100 h period in an experiment. The machine-learning global potential energy surface exploration determines the Pd-Ag-H bulk and surface phase diagrams under the reaction conditions, which reveals two key bulk compositions, PdAg (3̅) and PdAg (3̅), and quantifies the surface structures with varied Pd:Ag ratios under the reaction conditions. We show that the catalyst activity is controlled by the PdAg patterns on the (111) surface that are variable under reaction conditions, but the selectivity is largely determined by the amount of Pd exposure on the (100) surface. These insights provide the fundamental basis for the rational design of a better catalyst via three measures: (i) controlling the Pd:Ag ratio at 1:3, (ii) reducing the nanoparticle size to limit PdAg local patterns, (iii) searching for active supports to terminate the (100) facets.

摘要

钯银合金是一种用于在过量乙烯中进行乙炔选择性加氢的工业催化剂。尽管人们为提高选择性付出了巨大努力,但在低温下催化剂性能方面进展甚微。在此,通过将机器学习原子模拟与催化实验相结合,我们阐明了钯银合金催化剂在反应条件下的表面状态,并筛选出一种高性能的金红石型TiO负载钯银催化剂:即在实验中,在超过100小时的时间内,乙炔转化率>96%时选择性达到85%。机器学习全局势能面探索确定了反应条件下的钯-银-氢体相和表面相图,揭示了两个关键的体相组成,PdAg(3̅)和PdAg(3̅),并量化了反应条件下不同钯:银比的表面结构。我们表明,催化剂活性由(111)表面上在反应条件下可变的钯银图案控制,但选择性很大程度上由(100)表面上的钯暴露量决定。这些见解通过以下三项措施为合理设计更好的催化剂提供了基础:(i) 将钯:银比控制在1:3,(ii) 减小纳米颗粒尺寸以限制钯银局部图案,(iii) 寻找活性载体以终止(100)晶面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验