Suppr超能文献

海洋氨氧化古菌嗜盐硝化侏儒菌对铁限制的蛋白质组学响应揭示了补偿营养物质稀缺的策略。

Proteomic response of the marine ammonia-oxidising archaeon Nitrosopumilus maritimus to iron limitation reveals strategies to compensate for nutrient scarcity.

作者信息

Shafiee Roxana T, Snow Joseph T, Hester Svenja, Zhang Qiong, Rickaby Rosalind E M

机构信息

Department of Earth Sciences, South Parks Road, University of Oxford, Oxfordshire, OX1 3AN, UK.

Department of Biochemistry, South Parks Road, University of Oxford, Oxfordshire, OX1 3QU, UK.

出版信息

Environ Microbiol. 2022 Feb;24(2):835-849. doi: 10.1111/1462-2920.15491. Epub 2021 May 6.

Abstract

Dissolved iron (Fe) is vanishingly low in the oceans, with ecological success conferred to microorganisms that can restructure their biochemistry to maintain high growth rates during Fe scarcity. Chemolithoautotrophic ammonia-oxidising archaea (AOA) are highly abundant in the oceans, constituting ~30% of cells below the photic zone. Here we examine the proteomic response of the AOA isolate Nitrosopumilus maritimus to growth-limiting Fe concentrations. Under Fe limitation, we observed a significant reduction in the intensity of Fe-dense ferredoxins associated with respiratory complex I whilst complex III and IV proteins with more central roles in the electron transport chain remain unchanged. We concomitantly observed an increase in the intensity of Fe-free functional alternatives such as flavodoxin and plastocyanin, thioredoxin and alkyl hydroperoxide which are known to mediate electron transport and reactive oxygen species detoxification, respectively. Under Fe limitation, we found a marked increase in the intensity of the ABC phosphonate transport system (Phn), highlighting an intriguing link between Fe and P cycling in N. maritimus. We hypothesise that an elevated uptake of exogenous phosphonates under Fe limitation may either supplement N. maritimus' endogenous methylphosphonate biosynthesis pathway - which requires Fe - or enhance the production of phosphonate-containing exopolysaccharides known to efficiently bind environmental Fe.

摘要

海水中溶解态铁(Fe)的含量极低,那些能够重构自身生物化学过程以在铁缺乏时保持高生长速率的微生物因此获得了生态优势。化能自养型氨氧化古菌(AOA)在海洋中含量极高,在光合层以下的细胞中占比约30%。在此,我们研究了AOA分离株嗜盐硝化侏儒菌对限制生长的铁浓度的蛋白质组学响应。在铁限制条件下,我们观察到与呼吸复合体I相关的富含铁的铁氧化还原蛋白的强度显著降低,而在电子传递链中起更核心作用的复合体III和IV蛋白则保持不变。我们同时观察到无铁功能替代物的强度增加,如黄素氧化还原蛋白和质体蓝素、硫氧还蛋白和烷基过氧化氢,已知它们分别介导电子传递和活性氧解毒。在铁限制条件下,我们发现ABC膦酸盐转运系统(Phn)的强度显著增加,突出了嗜盐硝化侏儒菌中铁和磷循环之间的有趣联系。我们推测,在铁限制条件下外源膦酸盐摄取的增加可能要么补充嗜盐硝化侏儒菌内源性甲基膦酸盐生物合成途径(该途径需要铁),要么增强已知能有效结合环境中铁的含膦酸盐胞外多糖的产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验