Jet Propulsion Laboratory California Institution of Technology, Pasadena, CA, USA.
Photon Systems, Inc., Covina, CA, USA.
Appl Spectrosc. 2021 Jul;75(7):763-773. doi: 10.1177/00037028211013368. Epub 2021 May 20.
We describe the wavelength calibration of the spectrometer for the scanning of habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) instrument onboard NASA's Rover. SHERLOC utilizes deep ultraviolet Raman and fluorescence (DUV R/F) spectroscopy to enable analysis of samples from the Martian surface. SHERLOC employs a 248.6 nm deep ultraviolet laser to generate Raman-scattered photons and native fluorescence emission photons from near-surface material to detect and classify chemical and mineralogical compositions. The collected photons are focused on a charge-coupled device and the data are returned to Earth for analysis. The compact DUV R/F spectrometer has a spectral range from 249.9 nm to 353.6 nm (∼200 cm to 12 000 cm) (with a spectral resolution of 0.296 nm (∼40 cm)). The compact spectrometer uses a custom design to project a high-resolution Raman spectrum and a low-resolution fluorescence spectrum on a single charge-coupled device. The natural spectral separation enabled by deep ultraviolet excitation enables wavelength separation of the Raman/fluorescence spectra. The SHERLOC spectrometer was designed to optimize the resolution of the Raman spectral region and the wavelength range of the fluorescence region. The resulting illumination on the charge-coupled device is curved, requiring a segmented, nonlinear wavelength calibration in order to understand the mineralogy and chemistry of Martian materials.
我们描述了用于扫描宜居环境的拉曼和发光光谱仪(SHERLOC)仪器的波长校准,该仪器安装在 NASA 的火星车上。SHERLOC 利用深紫外拉曼和荧光(DUV R/F)光谱学来分析来自火星表面的样本。SHERLOC 采用 248.6nm 的深紫外激光产生拉曼散射光子和近表面材料的本征荧光发射光子,以检测和分类化学和矿物成分。收集到的光子被聚焦在电荷耦合器件上,数据被返回地球进行分析。紧凑型 DUV R/F 光谱仪的光谱范围为 249.9nm 至 353.6nm(约 200cm 至 12000cm)(光谱分辨率为 0.296nm(约 40cm))。紧凑型光谱仪采用定制设计,可在单个电荷耦合器件上投射高分辨率拉曼光谱和低分辨率荧光光谱。深紫外激发产生的自然光谱分离使 Raman/fluorescence 光谱的波长能够分离。SHERLOC 光谱仪的设计旨在优化 Raman 光谱区域的分辨率和荧光区域的波长范围。由于电荷耦合器件上的照明是弯曲的,因此需要分段的非线性波长校准,以了解火星物质的矿物学和化学性质。