Suppr超能文献

通过拉曼光谱分析火星上的石膏所面临的挑战。

Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.

作者信息

Marshall Craig P, Olcott Marshall Alison

机构信息

1 Department of Geology, The University of Kansas , Lawrence, Kansas.

2 Department of Chemistry, The University of Kansas , Lawrence, Kansas.

出版信息

Astrobiology. 2015 Sep;15(9):761-9. doi: 10.1089/ast.2015.1334. Epub 2015 Aug 28.

Abstract

Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam). The other is an in situ Raman spectrometer that employs a CW excitation laser emitting at 248.6 nm (SHERLOC). Recently, it has been shown with analyses by Curiosity that Gale Crater contains significantly elevated concentrations of transition metals such as Cr and Mn. Significantly, these transition metals are known to undergo fluorescence emission in the visible portion of the electromagnetic spectrum. Consequently, samples containing these metals could be problematic for the successful acquisition of fluorescence-free Raman spectra when using a CW 532 nm excitation source. Here, we investigate one analog environment, with a similar mineralogy and sedimentology to that observed in martian environments, as well as elevated Cr contents, to ascertain the best excitation wavelength to successfully collect fluorescence-free spectra from Mars-like samples. Our results clearly show that CW near-infrared laser excitation emitting at 785 nm is better suited to the collection of fluorescence-free Raman spectra than would be a CW laser emitting at 532 nm.

摘要

拉曼光谱能够在几乎无需样品制备的情况下,快速且无损地提供有关有机和无机物质的化学信息,因此使其成为火星探测器任务的理想仪器。计划于2018年发射的欧洲航天局(ESA)的ExoMars行星任务将包含一台小型化拉曼光谱仪(RLS),作为巴斯德有效载荷的一部分,该光谱仪使用发射波长为532纳米的连续波(CW)激光器运行。此外,美国国家航空航天局(NASA)正在为即将到来的火星2020探测器任务独立研发两台小型化拉曼光谱仪,其中一台是远程(远距离)拉曼光谱仪,它使用脉冲选通532纳米激发系统(SuperCam)。另一台是原位拉曼光谱仪,它采用发射波长为248.6纳米的连续波激发激光器(SHERLOC)。最近,好奇号的分析表明,盖尔陨石坑中过渡金属如铬和锰的浓度显著升高。值得注意的是,已知这些过渡金属会在电磁光谱的可见光部分发生荧光发射。因此,当使用532纳米连续波激发源时,含有这些金属的样品可能会对成功获取无荧光拉曼光谱造成问题。在此,我们研究一种模拟环境,其矿物学和沉积学与火星环境中观察到的相似,且铬含量较高,以确定从类火星样品中成功收集无荧光光谱的最佳激发波长。我们的结果清楚地表明,发射波长为785纳米的连续波近红外激光激发比发射波长为532纳米的连续波激光更适合用于收集无荧光拉曼光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验