Am J Epidemiol. 2021 Dec 1;190(12):2528-2533. doi: 10.1093/aje/kwab111.
This issue contains a thoughtful report by Gradus et al. (Am J Epidemiol. 2021;190(12):2517-2527) on a machine learning analysis of administrative variables to predict suicide attempts over 2 decades throughout Denmark. This is one of numerous recent studies that document strong concentration of risk of suicide-related behaviors among patients with high scores on machine learning models. The clear exposition of Gradus et al. provides an opportunity to review major challenges in developing, interpreting, and using such models: defining appropriate controls and time horizons, selecting comprehensive predictors, dealing with imbalanced outcomes, choosing classifiers, tuning hyperparameters, evaluating predictor variable importance, and evaluating operating characteristics. We close by calling for machine-learning research into suicide-related behaviors to move beyond merely demonstrating significant prediction-this is by now well-established-and to focus instead on using such models to target specific preventive interventions and to develop individualized treatment rules that can be used to help guide clinical decisions to address the growing problems of suicide attempts, suicide deaths, and other injuries and deaths in the same spectrum.
本期内容包含 Gradus 等人(Am J Epidemiol. 2021;190(12):2517-2527)的一篇关于使用机器学习分析行政变量来预测丹麦 20 多年来自杀未遂情况的深思熟虑的报告。这是众多最近的研究之一,这些研究记录了在机器学习模型中得分较高的患者中自杀相关行为的风险高度集中。Gradus 等人的清晰阐述提供了一个机会,可以回顾开发、解释和使用此类模型所面临的主要挑战:定义适当的对照和时间范围、选择全面的预测因素、处理不平衡的结果、选择分类器、调整超参数、评估预测变量的重要性以及评估操作特性。最后,我们呼吁针对自杀相关行为的机器学习研究不要仅仅停留在证明显著的预测能力上,因为这一点现在已经得到了充分的证实,而应将重点放在使用这些模型来针对特定的预防干预措施,并制定个体化的治疗规则,以帮助指导临床决策,解决自杀未遂、自杀死亡以及同一谱系中的其他伤害和死亡问题日益严重的问题。