School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne, NE1 7RU, UK.
Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, NE7 7DN, UK.
Int J Med Inform. 2021 Jun;150:104457. doi: 10.1016/j.ijmedinf.2021.104457. Epub 2021 Apr 10.
Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients at risk of developing infection and subsequent sepsis. This systematic review aims to identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis.
This systematic review was registered in PROSPERO database (CRD42020158685). We conducted a systematic literature review across 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase. Quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adults in all care settings were eligible for inclusion.
Seventeen articles met our inclusion criteria. We identified 194 predictors that were used to train machine learning algorithms, with 13 predictors used on average across all included studies. The most prevalent predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR<60 mL/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit < 30 %. All included studies used artificial intelligence techniques, with average sensitivity 75.7 ± 17.88, and average specificity 63.08 ± 22.01.
The type of predictors influenced the predictive power and predictive timeframe of the developed machine learning algorithm. Predicting the likelihood of sepsis through artificial intelligence can help concentrate finite resources to those patients who are most at risk. Future studies should focus on developing more sensitive and specific algorithms.
脓毒症是一种危及生命的疾病,与死亡率增加有关。人工智能工具可以通过标记有感染和随后发生脓毒症风险的患者来为临床决策提供信息。本系统评价旨在确定用于训练机器学习算法以预测感染和随后发生脓毒症可能性的最佳预测因子集。
本系统评价已在 PROSPERO 数据库(CRD42020158685)中注册。我们在 3 个大型数据库(Medline、 Cumulative Index of Nursing and Allied Health Literature 和 Embase)中进行了系统文献检索。符合纳入标准的定量原始研究均聚焦于成人在所有护理环境中与细菌感染相关的脓毒症预测。
17 篇文章符合我们的纳入标准。我们确定了 194 个用于训练机器学习算法的预测因子,所有纳入研究平均使用 13 个预测因子。最常见的预测因子包括年龄、性别、吸烟、饮酒、心率、血压、乳酸水平、心血管疾病、内分泌疾病、癌症、慢性肾脏病(eGFR<60 mL/min)、白细胞计数、肝功能障碍、手术方式(开放或微创)和术前血细胞比容<30%。所有纳入研究均使用了人工智能技术,平均敏感性为 75.7±17.88,平均特异性为 63.08±22.01。
预测因子的类型影响了开发的机器学习算法的预测能力和预测时间范围。通过人工智能预测脓毒症的可能性有助于将有限的资源集中用于最有风险的患者。未来的研究应侧重于开发更敏感和特异的算法。