NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
J Neurol Neurosurg Psychiatry. 2021 Sep;92(9):995-1006. doi: 10.1136/jnnp-2020-325610. Epub 2021 Apr 20.
In multiple sclerosis (MS), MRI measures at the whole brain or regional level are only modestly associated with disability, while network-based measures are emerging as promising prognostic markers. We sought to demonstrate whether data-driven patterns of covarying regional grey matter (GM) volumes predict future disability in secondary progressive MS (SPMS).
We used cross-sectional structural MRI, and baseline and longitudinal data of Expanded Disability Status Scale, Nine-Hole Peg Test (9HPT) and Symbol Digit Modalities Test (SDMT), from a clinical trial in 988 people with SPMS. We processed T1-weighted scans to obtain GM probability maps and applied spatial independent component analysis (ICA). We repeated ICA on 400 healthy controls. We used survival models to determine whether baseline patterns of covarying GM volume measures predict cognitive and motor worsening.
We identified 15 patterns of regionally covarying GM features. Compared with whole brain GM, deep GM and lesion volumes, some ICA components correlated more closely with clinical outcomes. A mainly basal ganglia component had the highest correlations at baseline with the SDMT and was associated with cognitive worsening (HR=1.29, 95% CI 1.09 to 1.52, p<0.005). Two ICA components were associated with 9HPT worsening (HR=1.30, 95% CI 1.06 to 1.60, p<0.01 and HR=1.21, 95% CI 1.01 to 1.45, p<0.05). ICA measures could better predict SDMT and 9HPT worsening (C-index=0.69-0.71) compared with models including only whole and regional MRI measures (C-index=0.65-0.69, p value for all comparison <0.05).
The disability progression was better predicted by some of the covarying GM regions patterns, than by single regional or whole-brain measures. ICA, which may represent structural brain networks, can be applied to clinical trials and may play a role in stratifying participants who have the most potential to show a treatment effect.
在多发性硬化症(MS)中,全脑或局部水平的 MRI 测量与残疾的相关性仅适中,而基于网络的测量方法正成为有前途的预后标志物。我们试图证明,区域灰质(GM)体积的相关数据驱动模式是否可以预测继发性进展性多发性硬化症(SPMS)的未来残疾。
我们使用来自 SPMS 临床试验的横断面结构 MRI 以及扩展残疾状况量表、九孔钉测试(9HPT)和符号数字模态测试(SDMT)的基线和纵向数据,对 988 名 SPMS 患者进行了处理。我们处理 T1 加权扫描以获得 GM 概率图,并应用空间独立成分分析(ICA)。我们在 400 名健康对照者中重复了 ICA。我们使用生存模型来确定基线时 GM 体积变化模式是否可以预测认知和运动恶化。
我们鉴定了 15 个区域 GM 特征相关的模式。与全脑 GM、深部 GM 和病变体积相比,一些 ICA 成分与临床结果的相关性更高。主要基底节成分与 SDMT 的相关性最高,与认知恶化相关(HR=1.29,95%CI 1.09 至 1.52,p<0.005)。两个 ICA 成分与 9HPT 恶化相关(HR=1.30,95%CI 1.06 至 1.60,p<0.01 和 HR=1.21,95%CI 1.01 至 1.45,p<0.05)。与仅包括全脑和局部 MRI 测量的模型相比,ICA 测量值可以更好地预测 SDMT 和 9HPT 的恶化(C 指数=0.69-0.71)(所有比较的 p 值均<0.05)。
与单一区域或全脑测量相比,一些 GM 区域模式的残疾进展预测效果更好。ICA 可能代表结构脑网络,可应用于临床试验,并可能在分层具有最大治疗效果潜力的参与者方面发挥作用。