Yang Biao, Uphoff Martin, Zhang Yi-Qi, Reichert Joachim, Seitsonen Ari Paavo, Bauer Andreas, Pfleiderer Christian, Barth Johannes V
Physics Department, Technical University of Munich, Garching D-85748, Germany.
Physics Department, Technical University of Munich, Garching D-85748, Germany;
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2021203118.
Iron silicide (FeSi) is a fascinating material that has attracted extensive research efforts for decades, notably revealing unusual temperature-dependent electronic and magnetic characteristics, as well as a close resemblance to the Kondo insulators whereby a coherent picture of intrinsic properties and underlying physics remains to be fully developed. For a better understanding of this narrow-gap semiconductor, we prepared and examined FeSi(110) single-crystal surfaces of high quality. Combined insights from low-temperature scanning tunneling microscopy and density functional theory calculations (DFT) indicate an unreconstructed surface termination presenting rows of Fe-Si pairs. Using high-resolution tunneling spectroscopy (STS), we identify a distinct asymmetric electronic gap in the sub-10 K regime on defect-free terraces. Moreover, the STS data reveal a residual density of states in the gap regime whereby two in-gap states are recognized. The principal origin of these features is rationalized with the help of the DFT-calculated band structure. The computational modeling of a (110)-oriented slab notably evidences the existence of interfacial intragap bands accounting for a markedly increased density of states around the Fermi level. These findings support and provide further insight into the emergence of surface metallicity in the low-temperature regime.
硅化铁(FeSi)是一种引人入胜的材料,几十年来一直吸引着广泛的研究,尤其展现出异常的温度依赖性电子和磁性特性,并且与近藤绝缘体极为相似,但其本征性质和基础物理的连贯图景仍有待充分完善。为了更好地理解这种窄带隙半导体,我们制备并研究了高质量的FeSi(110)单晶表面。低温扫描隧道显微镜和密度泛函理论计算(DFT)的综合见解表明,未重构的表面终端呈现出Fe-Si对的排列。使用高分辨率隧道光谱(STS),我们在无缺陷台面上识别出低于10 K温度区间内明显的不对称电子能隙。此外,STS数据揭示了能隙区域的态密度残余,其中识别出两个能隙态。借助DFT计算的能带结构,这些特征的主要起源得到了合理的解释。对(110)取向平板的计算建模显著证明了界面能隙内能带的存在,这导致费米能级周围的态密度显著增加。这些发现支持并进一步深入了解了低温区域表面金属性的出现。