Fan Bin-Bin, Fan Hai-Ning, Chen Xiao-Hua, Gao Xuan-Wen, Chen Shanliang, Tang Qun-Li, Luo Wen-Bin, Deng Yida, Hu Ai-Ping, Hu Wenbin
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
College of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
ACS Appl Mater Interfaces. 2021 May 5;13(17):19894-19903. doi: 10.1021/acsami.0c22905. Epub 2021 Apr 21.
Exploring active materials with a high rate capability and long lifespan for sodium ion batteries attracts much more attention and plays an important role in realizing clean energy storage and conversion. The strategy of optimizing the electronic structure by atomic element substitution within MoS layers was employed to change the inherent physical property. The enhanced electronic conductivity from a decreased bandgap and increased surface Na adsorption energy can efficiently and dramatically optimize the electrochemical performance for sodium storage. Attempting to limit the large volume variation and avoid MoS nanosheet stacking and restacking, numerous nanosheets are grown into a designed hierarchical mesopore carbon matrix. This structure can tightly capture the nanosheets to prevent them from aggregating and offer a sufficient buffer zone for alleviating severe volume changes during the discharging/charging process, contributing remarkably to the structural integrity and superior rate performance of electrodes.
探索具有高倍率性能和长寿命的钠离子电池活性材料备受关注,对实现清洁能源存储和转换具有重要意义。采用通过在MoS层内进行原子元素取代来优化电子结构的策略,以改变其固有物理性质。带隙减小和表面Na吸附能增加所导致的电子导电性增强,能够有效且显著地优化钠存储的电化学性能。为了限制大的体积变化并避免MoS纳米片的堆叠和重新堆叠,大量纳米片生长到设计的分级介孔碳基质中。这种结构可以紧密捕获纳米片以防止它们聚集,并提供足够的缓冲区域来缓解充放电过程中的剧烈体积变化,对电极的结构完整性和优异的倍率性能有显著贡献。