Beaulieu Samuel, Dong Shuo, Tancogne-Dejean Nicolas, Dendzik Maciej, Pincelli Tommaso, Maklar Julian, Xian R Patrick, Sentef Michael A, Wolf Martin, Rubio Angel, Rettig Laurenz, Ernstorfer Ralph
Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany.
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.
Sci Adv. 2021 Apr 21;7(17). doi: 10.1126/sciadv.abd9275. Print 2021 Apr.
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+ simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal -MoTe We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
费米面是我们理解金属和强关联多体系统的核心。费米面拓扑结构的突然变化,也称为里夫希茨转变,会导致出现诸如巨磁阻和超导等迷人现象。虽然通过对宏观参数(如应变、掺杂、压力和温度)进行平衡调节,已在多种材料中证明了里夫希茨转变,但尚未通过实验证明通过非平衡动力学途径对费米面拓扑结构进行超快修改。我们将时间分辨多维光电子能谱与最先进的含时密度泛函理论(TDDFT +)模拟相结合,提出了一种在关联的II型外尔半金属碲化钼( -MoTe)中驱动超快里夫希茨转变的方案。我们证明,这种非平衡拓扑电子转变的微观起源在于有效电子关联的动态修改。这些结果揭示了一种以前未被探索的用于控制关联量子材料中费米面拓扑结构的超快方案。