Fish Margaret B, Banka Alison L, Braunreuther Margaret, Fromen Catherine A, Kelley William J, Lee Jonathan, Adili Reheman, Holinstat Michael, Eniola-Adefeso Omolola
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
Sci Adv. 2021 Apr 21;7(17). doi: 10.1126/sciadv.abe0143. Print 2021 Apr.
Vascular-targeted drug carriers must localize to the wall (i.e., marginate) and adhere to a diseased endothelium to achieve clinical utility. The particle size has been reported as a critical physical property prescribing particle margination in vitro and in vivo blood flows. Different transport process steps yield conflicting requirements-microparticles are optimal for margination, but nanoparticles are better for intracellular or tissue delivery. Here, we evaluate deformable hydrogel microparticles as carriers for transporting nanoparticles to a diseased vascular wall. Depending on microparticle modulus, nanoparticle-loaded poly(ethylene glycol)-based hydrogel microparticles delivered significantly more 50-nm nanoparticles to the vessel wall than freely injected nanoparticles alone, resulting in >3000% delivery increase. This work demonstrates the benefit of optimizing microparticles' efficient margination to enhance nanocarriers' transport to the vascular wall.
血管靶向药物载体必须定位于血管壁(即边缘化)并粘附于病变的内皮细胞,以实现临床应用价值。据报道,粒径是决定微粒在体外和体内血流中边缘化的关键物理性质。不同的运输过程步骤产生了相互矛盾的要求——微粒最适合边缘化,但纳米颗粒更有利于细胞内或组织递送。在这里,我们评估了可变形水凝胶微粒作为将纳米颗粒运输到病变血管壁的载体。根据微粒模量不同,负载纳米颗粒的聚乙二醇基水凝胶微粒比单独自由注射的纳米颗粒向血管壁递送的50纳米纳米颗粒显著更多,递送量增加超过3000%。这项工作证明了优化微粒的高效边缘化以增强纳米载体向血管壁运输的益处。