Suppr超能文献

跨纳米孔缩窄区转运时细胞色素 c 的电展开。

Electrical unfolding of cytochrome during translocation through a nanopore constriction.

机构信息

Department of Physics, Northeastern University, Boston, MA 02115.

Center for Biophysics and Quatitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2016262118.

Abstract

Many small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome (cyt ) through ultrathin silicon nitride (SiN) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5-nm-diameter pore, we find that, in a threshold electric-field regime of ∼30 to 100 MV/m, cyt is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5- and 2.0-nm-diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens avenues for exploring protein folding structures, internal contacts, and electric-field-induced deformability.

摘要

许多小蛋白通过狭窄的孔道在细胞区室之间移动。为了使蛋白质穿过狭窄的部位,必须克服自由能,使蛋白质变形或完全展开。原则上,孔的直径、使蛋白质展开的有效驱动力以及其迁移的障碍,都应该是控制该过程是通过挤压、展开/穿线还是两者兼有的关键因素。为了探究这一已确立的蛋白质系统,我们研究了细胞色素(cyt)在直径为 1.5 至 5.5nm 的超薄氮化硅(SiN)固态纳米孔中电场驱动的迁移行为。对于 2.5nm 直径的孔,我们发现,在约 30 至 100MV/m 的阈值电场范围内,cyt 能够通过孔挤压。随着孔内电场的增加,cyt 的展开状态在热力学上得到稳定,促进了其迁移。相比之下,对于 1.5nm 和 2nm 直径的孔,只有当完全展开的蛋白质穿过孔口的更高能量展开中间状态后,才能通过穿线的方式进行迁移。使用简单的热力学模型提取了亚稳态、中间和展开蛋白状态之间的相对能量,该模型由通过纳米孔的相对较慢(约 ms)的蛋白质迁移时间决定。这些实验描绘了蛋白质穿过狭窄部位的各种迁移模式,为探索蛋白质折叠结构、内部接触和电场诱导的可变形性开辟了途径。

相似文献

3
Threading single proteins through pores to compare their energy landscapes.通过孔道将单个蛋白质穿过去比较它们的能量景观。
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2202779119. doi: 10.1073/pnas.2202779119. Epub 2022 Sep 19.
4
Multistep protein unfolding during nanopore translocation.多步骤蛋白质在纳米孔穿膜过程中的变性。
Nat Nanotechnol. 2013 Apr;8(4):288-95. doi: 10.1038/nnano.2013.22. Epub 2013 Mar 10.
5
Characterization of protein unfolding with solid-state nanopores.利用固态纳米孔表征蛋白质解折叠
Protein Pept Lett. 2014 Mar;21(3):256-65. doi: 10.2174/09298665113209990077.
7
Folding of horse cytochrome c in the reduced state.还原态马细胞色素c的折叠
J Mol Biol. 2001 Oct 5;312(5):1135-60. doi: 10.1006/jmbi.2001.4993.

引用本文的文献

3
Single-Molecule Electrical Profiling of Peptides and Proteins.肽和蛋白质的单分子电学分析
Adv Sci (Weinh). 2024 Jul;11(28):e2401877. doi: 10.1002/advs.202401877. Epub 2024 Apr 19.
6
A Marcus-Type Inverted Region in the Translocation Kinetics of a Knotted Protein.一个扭结蛋白的转位动力学中的马库斯型反转区域。
J Phys Chem Lett. 2023 Nov 30;14(47):10719-10726. doi: 10.1021/acs.jpclett.3c02183. Epub 2023 Nov 27.
9
Threading single proteins through pores to compare their energy landscapes.通过孔道将单个蛋白质穿过去比较它们的能量景观。
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2202779119. doi: 10.1073/pnas.2202779119. Epub 2022 Sep 19.
10
Profiling single-molecule reaction kinetics under nanopore confinement.在纳米孔限制条件下分析单分子反应动力学。
Chem Sci. 2022 Mar 14;13(14):4109-4114. doi: 10.1039/d1sc06837g. eCollection 2022 Apr 6.

本文引用的文献

1
Squeezing a single polypeptide through a nanopore.将单个多肽挤过纳米孔。
Soft Matter. 2008 Apr 15;4(5):925-931. doi: 10.1039/b719850g.
7
Differential Enzyme Flexibility Probed Using Solid-State Nanopores.利用固态纳米孔探测酶的差异灵活性。
ACS Nano. 2018 May 22;12(5):4494-4502. doi: 10.1021/acsnano.8b00734. Epub 2018 Apr 17.
8
One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.一种肽揭示了α-螺旋展开-折叠动力学的两面性。
J Phys Chem B. 2018 Apr 12;122(14):3790-3800. doi: 10.1021/acs.jpcb.8b00229. Epub 2018 Mar 30.
9
Nanopore Sensing of Protein Folding.纳米孔感知蛋白质折叠。
ACS Nano. 2017 Jul 25;11(7):7091-7100. doi: 10.1021/acsnano.7b02718. Epub 2017 Jul 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验