Suppr超能文献

利用固态纳米孔探测酶的差异灵活性。

Differential Enzyme Flexibility Probed Using Solid-State Nanopores.

机构信息

State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , People's Republic of China.

Collaborative Innovation Center of Quantum Matter , Beijing 100084 , People's Republic of China.

出版信息

ACS Nano. 2018 May 22;12(5):4494-4502. doi: 10.1021/acsnano.8b00734. Epub 2018 Apr 17.

Abstract

Enzymes and motor proteins are dynamic macromolecules that coexist in a number of conformations of similar energies. Protein function is usually accompanied by a change in structure and flexibility, often induced upon binding to ligands. However, while measuring protein flexibility changes between active and resting states is of therapeutic significance, it remains a challenge. Recently, our group has demonstrated that breadth of signal amplitudes in measured electrical signatures as an ensemble of individual protein molecules is driven through solid-state nanopores and correlates with protein conformational dynamics. Here, we extend our study to resolve subtle flexibility variation in dihydrofolate reductase mutants from unlabeled single molecules in solution. We first demonstrate using a canonical protein system, adenylate kinase, that both size and flexibility changes can be observed upon binding to a substrate that locks the protein in a closed conformation. Next, we investigate the influence of voltage bias and pore geometry on the measured electrical pulse statistics during protein transport. Finally, using the optimal experimental conditions, we systematically study a series of wild-type and mutant dihydrofolate reductase proteins, finding a good correlation between nanopore-measured protein conformational dynamics and equilibrium bulk fluorescence probe measurements. Our results unequivocally demonstrate that nanopore-based measurements reliably probe conformational diversity in native protein ensembles.

摘要

酶和动力蛋白是动态的大分子,它们以相似能量的多种构象共同存在。蛋白质的功能通常伴随着结构和柔韧性的变化,这种变化通常是在与配体结合时诱导产生的。然而,虽然测量活性和静止状态下蛋白质柔韧性的变化对于治疗具有重要意义,但这仍然是一个挑战。最近,我们的研究小组已经证明,通过固态纳米孔测量的电信号幅度的宽度作为单个蛋白质分子的集合,与蛋白质构象动力学有关。在这里,我们将研究扩展到从溶液中的未标记单分子中解析二氢叶酸还原酶突变体的细微柔韧性变化。我们首先使用经典的蛋白质系统腺嘌呤激酶证明,在与将蛋白质锁定在封闭构象的底物结合时,可以观察到大小和柔韧性的变化。接下来,我们研究了电压偏置和孔几何形状对蛋白质传输过程中测量的电脉冲统计数据的影响。最后,使用最佳实验条件,我们系统地研究了一系列野生型和突变型二氢叶酸还原酶蛋白,发现纳米孔测量的蛋白质构象动力学与平衡体荧光探针测量之间存在良好的相关性。我们的结果明确表明,基于纳米孔的测量可以可靠地探测天然蛋白质集合中的构象多样性。

相似文献

1
Differential Enzyme Flexibility Probed Using Solid-State Nanopores.利用固态纳米孔探测酶的差异灵活性。
ACS Nano. 2018 May 22;12(5):4494-4502. doi: 10.1021/acsnano.8b00734. Epub 2018 Apr 17.

引用本文的文献

6
Engineering Biological Nanopore Approaches toward Protein Sequencing.工程生物纳米孔方法进行蛋白质测序。
ACS Nano. 2023 Sep 12;17(17):16369-16395. doi: 10.1021/acsnano.3c05628. Epub 2023 Jul 25.
7
Protein Sizing with 15 nm Conical Biological Nanopore YaxAB.15nm 锥形生物纳米孔 YaxAB 的蛋白质尺寸测定。
ACS Nano. 2023 Jul 25;17(14):13685-13699. doi: 10.1021/acsnano.3c02847. Epub 2023 Jul 17.
10
Localized Nanopore Fabrication via Controlled Breakdown.通过可控击穿实现局部纳米孔制造
Nanomaterials (Basel). 2022 Jul 12;12(14):2384. doi: 10.3390/nano12142384.

本文引用的文献

8
Tiny protein detection using pressure through solid-state nanopores.利用压力通过固态纳米孔检测微小蛋白质
Electrophoresis. 2017 Apr;38(8):1130-1138. doi: 10.1002/elps.201600410. Epub 2017 Feb 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验