Huber-Gedert Marina, Nowakowski Michał, Kertmen Ahmet, Burkhardt Lukas, Lindner Natalia, Schoch Roland, Herbst-Irmer Regine, Neuba Adam, Schmitz Lennart, Choi Tae-Kyu, Kubicki Jacek, Gawelda Wojciech, Bauer Matthias
Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
Faculty of Physics, Adam Mickiewicz University Poznań, ul. Uniwersytetu Poznańskiego 2, Poznań, 61-614, Poland.
Chemistry. 2021 Jul 7;27(38):9905-9918. doi: 10.1002/chem.202100766. Epub 2021 Jun 1.
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a MC state. Attachment of cobaloxime to the iron photosensitizer increases the MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH) (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.
通过将一种异质四氮杂环卡宾铁(II)光敏剂(其将2,6-双[3-(2,6-二异丙基苯基)咪唑-2-亚基]吡啶与2,6-双(3-甲基-咪唑-2-亚基)-4,4'-联吡啶配体结合)与钴肟催化剂相连,获得了一种新型的贱金属铁钴二元体系。这种新型的铁(II)-钴(III)组装体已通过诸如X射线晶体学、X射线吸收光谱、(光谱)电化学以及稳态和时间分辨光吸收光谱等基态和激发态方法进行了广泛表征,特别关注分子组装体在溶液中的稳定性以及激发态势能面的确定。核磁共振和紫外/可见光谱表明,该二元体系在乙腈中浓度低于1 mM时会发生解离,并且具有高光稳定性。在激发进入金属-配体电荷转移吸收带后进行的瞬态吸收光谱表明,存在一个源于热单重态和三重态MLCT态的弛豫级联,导致具有最长寿命的MLCT态的布居。最后,衰减到基态涉及一个MC态。钴肟与铁光敏剂的连接增加了铁中心处的MLCT寿命。连同连接体的导向作用,这可能使该二元体系在光催化质子还原实验中比由铁光敏剂和Co(dmgH)(py)Cl组成的类似双组分体系更具活性。因此,这项工作为贱金属二元体系的功能提供了新的见解,这对于更高效和可持续的未来质子还原系统很重要。