University of Southampton Faculty of Engineering Science and Mathematics, Chemistry, University Road, Southampton, UK SO17 1BJ, UK.
Phys Chem Chem Phys. 2021 Apr 22;23(15):9381-9393. doi: 10.1039/d1cp00206f.
The accurate prediction of protein-ligand binding free energies with tractable computational methods has the potential to revolutionize drug discovery. Modeling the protein-ligand interaction at a quantum mechanical level, instead of relying on empirical classical-mechanics methods, is an important step toward this goal. In this study, we explore the QM-PBSA method to calculate the free energies of binding of seven ligands to the T4-lysozyme L99A/M102Q mutant using linear-scaling density functional theory on the whole protein-ligand complex. By leveraging modern high-performance computing we perform over 2900 full-protein (2600 atoms) DFT calculations providing new insights into the convergence, precision and reproducibility of the QM-PBSA method. We find that even at moderate sampling over 50 snapshots, the convergence of QM-PBSA is similar to traditional MM-PBSA and that the DFT-based energy evaluations are very reproducible. We show that in the QM-PBSA framework, the physically-motivated GGA exchange-correlation functional PBE outperforms the more modern, dispersion-including non-local and meta-GGA-nonlocal functionals VV10 and B97M-rV. Different empirical dispersion corrections perform similarly well but the three-body dispersion term, as included in Grimme's D3 dispersion, is significant and improves results slightly. Inclusion of an entropy correction term sampled over less than 25 snapshots is detrimental while an entropy correction sampled over the same 50 or 100 snapshots as the enthalpies improves the accuracy of the QM-PBSA method. As full-protein DFT calculations can now be performed on modest computational resources our study demonstrates that they can be a useful addition to the toolbox of free energy calculations.
用可计算的方法准确预测蛋白质-配体结合自由能有可能彻底改变药物发现。在量子力学水平上模拟蛋白质-配体相互作用,而不是依赖经验的经典力学方法,是实现这一目标的重要步骤。在这项研究中,我们探索了 QM-PBSA 方法,使用整个蛋白质-配体复合物的线性标度密度泛函理论,计算了七种配体与 T4 溶菌酶 L99A/M102Q 突变体结合的自由能。通过利用现代高性能计算,我们进行了超过 2900 次全蛋白(2600 个原子)DFT 计算,为 QM-PBSA 方法的收敛性、精度和可重复性提供了新的见解。我们发现,即使在适度的采样中,超过 50 个快照,QM-PBSA 的收敛性与传统的 MM-PBSA 相似,并且基于 DFT 的能量评估非常可重复。我们表明,在 QM-PBSA 框架中,物理上合理的 GGA 交换相关泛函 PBE 优于更现代的、包括非局部和元 GGA-非局部泛函 VV10 和 B97M-rV 的色散的泛函。不同的经验色散校正效果相似,但包括在 Grimme 的 D3 色散中的三体色散项是显著的,并略微改善了结果。在少于 25 个快照中采样的熵校正项的包含是有害的,而在与焓相同的 50 或 100 个快照中采样的熵校正项改善了 QM-PBSA 方法的准确性。由于现在可以在适度的计算资源上进行全蛋白 DFT 计算,我们的研究表明,它们可以成为自由能计算工具箱的有用补充。