Zhang Zhanlin, Zhang Dandan, Qiu Bo, Cao Wenxiong, Liu Yuan, Liu Qingjie, Li Xiaohong
School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P.R. China.
Nanoscale. 2021 Apr 7;13(13):6545-6557. doi: 10.1039/d0nr08853f. Epub 2021 Mar 25.
Cancer chemotherapy remains challenging to pass through various biological and pathological barriers such as blood circulation, tumor infiltration and cellular uptake before the intracellular release of antineoplastic agents. Herein, icebreaker-inspired Janus nanomotors (JMs) are developed to address these transportation barriers. Janus nanorods (JRs) are constructed via seed-defined growth of mesoporous silica nanoparticles on doxorubicin (DOX)-loaded hydroxyapatite (HAp) nanorods. One side of JRs is grafted with urease as the motion power via catalysis of physiologically existed urea, and hyaluronidase (HAase) is on the other side to digest the viscous extracellular matrices (ECM) of tumor tissues. The rod-like feature of JMs prolongs the blood circulation, and the self-propelling force and instantaneous digestion of hyaluronic acid along the moving paths promote extravasation across blood vessels and penetration in tumor mass, leading to 2-fold higher drug levels in tumors after JM administration than those with JRs. The digestion of ECM in the diffusion paths is more effective to enhance drug retention and diffusion in tumors compared with enzyme-mediated motion. The ECM digestion and motion capabilities of JMs show no influence on the endocytosis mechanism, but lead to over 3-fold higher cellular uptake than those of pristine JRs. The JM treatment promotes therapeutic efficacy in terms of survival prolongation, tumor growth inhibition and cell apoptosis induction and causes no tumor metastasis to lungs with normal alveolar spaces. Thus, the self-driven motion and instantaneous clearance of diffusion routes demonstrate a feasible strategy to combat a series of biological barriers in the delivery of chemotherapeutic agents in favor of antitumor efficacy.
在抗肿瘤药物进行细胞内释放之前,癌症化疗要穿透各种生物和病理屏障(如血液循环、肿瘤浸润和细胞摄取)仍然具有挑战性。在此,受破冰船启发开发了Janus纳米马达(JMs)来解决这些运输障碍。Janus纳米棒(JRs)是通过在负载阿霉素(DOX)的羟基磷灰石(HAp)纳米棒上进行种子定义生长来构建介孔二氧化硅纳米颗粒而制成的。JRs的一侧通过催化生理存在的尿素接枝脲酶作为运动动力,另一侧是透明质酸酶(HAase)以消化肿瘤组织的粘性细胞外基质(ECM)。JMs的棒状特征延长了血液循环时间,其自推进力以及沿移动路径对透明质酸的即时消化促进了其跨血管外渗和在肿瘤块中的渗透,导致在给予JM后肿瘤中的药物水平比给予JR时高2倍。与酶介导的运动相比,在扩散路径中对ECM的消化在增强药物在肿瘤中的保留和扩散方面更有效。JMs对ECM的消化和运动能力对内吞机制没有影响,但导致细胞摄取比原始JRs高3倍以上。JM治疗在延长生存期、抑制肿瘤生长和诱导细胞凋亡方面提高了治疗效果,并且不会导致肿瘤转移到具有正常肺泡空间的肺部。因此,自驱动运动和对扩散途径的即时清除证明了一种可行的策略,可对抗化疗药物递送中的一系列生物屏障,有利于提高抗肿瘤疗效。