Suppr超能文献

揭示早期视觉处理中周边抑制的机制。

Unraveling the mechanisms of surround suppression in early visual processing.

机构信息

Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.

Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2021 Apr 22;17(4):e1008916. doi: 10.1371/journal.pcbi.1008916. eCollection 2021 Apr.

Abstract

This paper uses mathematical modeling to study the mechanisms of surround suppression in the primate visual cortex. We present a large-scale neural circuit model consisting of three interconnected components: LGN and two input layers (Layer 4Ca and Layer 6) of the primary visual cortex V1, covering several hundred hypercolumns. Anatomical structures are incorporated and physiological parameters from realistic modeling work are used. The remaining parameters are chosen to produce model outputs that emulate experimentally observed size-tuning curves. Our two main results are: (i) we discovered the character of the long-range connections in Layer 6 responsible for surround effects in the input layers; and (ii) we showed that a net-inhibitory feedback, i.e., feedback that excites I-cells more than E-cells, from Layer 6 to Layer 4 is conducive to producing surround properties consistent with experimental data. These results are obtained through parameter selection and model analysis. The effects of nonlinear recurrent excitation and inhibition are also discussed. A feature that distinguishes our model from previous modeling work on surround suppression is that we have tried to reproduce realistic lengthscales that are crucial for quantitative comparison with data. Due to its size and the large number of unknown parameters, the model is computationally challenging. We demonstrate a strategy that involves first locating baseline values for relevant parameters using a linear model, followed by the introduction of nonlinearities where needed. We find such a methodology effective, and propose it as a possibility in the modeling of complex biological systems.

摘要

本文使用数学建模研究灵长类视觉皮层中的环绕抑制机制。我们提出了一个由三个相互连接的组件组成的大规模神经回路模型:LGN 和初级视觉皮层 V1 的两个输入层(Layer 4Ca 和 Layer 6),覆盖数百个超柱。我们整合了解剖结构,并使用来自现实建模工作的生理参数。其余参数的选择旨在产生模拟实验观察到的大小调谐曲线的模型输出。我们的两个主要结果是:(i)我们发现了负责输入层环绕效应的 Layer 6 中的长程连接的特征;(ii)我们表明,来自 Layer 6 到 Layer 4 的净抑制反馈(即,比 E 细胞更兴奋的 I 细胞的反馈)有利于产生与实验数据一致的环绕特性。这些结果是通过参数选择和模型分析获得的。还讨论了非线性复发性兴奋和抑制的影响。我们的模型与之前关于环绕抑制的建模工作的一个区别特征是,我们试图再现与数据进行定量比较至关重要的现实长度尺度。由于其规模和大量未知参数,该模型在计算上具有挑战性。我们展示了一种策略,首先使用线性模型为相关参数找到基准值,然后在需要时引入非线性。我们发现这种方法很有效,并提出在复杂生物系统的建模中作为一种可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f190/8104395/0517e6ebf783/pcbi.1008916.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验