Friedhoff Victor Nicolai, Antunes Gabriela, Falcke Martin, Simões de Souza Fabio M
Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brasil.
Biophys J. 2021 Jun 1;120(11):2112-2123. doi: 10.1016/j.bpj.2021.03.027. Epub 2021 Apr 20.
Calcium (Ca) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP)-induced Ca release. These Ca transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca, requiring stochastic single-particle methods when modeling them. We use the stochastic particle simulation program MCell to simulate Ca transients within a three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca transporters, and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca transients in different dynamical situations. We test two different models of the IP receptor (IPR). The model with nonlinear concentration response of binding of activating Ca reproduces experimental results better than the model with linear response because of the filtering of noise. Our results also suggest that Ca-dependent inhibition of the IPR needs to be slow to reproduce experimental results. Simulations suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca and IP production sensitizing IPR for Ca-induced Ca release. We also model ataxia, a loss of fine motor control assumed to be the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of Ca transients. Finally, we propose possible ways of recovering Ca transients under ataxia.
钙(Ca)作为第二信使,被认为通过肌醇三磷酸(IP)诱导的钙释放,以长期抑制和长期增强的形式控制浦肯野细胞树突棘突触处的突触强度变化。这些钙瞬变是对来自颗粒细胞的平行纤维(PFs)和下橄榄核的攀缘纤维(CFs)的刺激做出的反应。这些事件在游离钙数量较少的情况下发生,在对其进行建模时需要采用随机单粒子方法。我们使用随机粒子模拟程序MCell来模拟三维浦肯野细胞树突棘内的钙瞬变。模型树突棘包括内质网、几种钙转运体和内源性缓冲分子。我们的模拟成功再现了不同动态情况下钙瞬变的特性。我们测试了两种不同的IP受体(IPR)模型。由于噪声过滤,具有激活钙结合的非线性浓度响应的模型比具有线性响应的模型能更好地再现实验结果。我们的结果还表明,IPR的钙依赖性抑制需要缓慢才能再现实验结果。模拟表明,实验观察到的CF刺激的最佳时间窗口源于CF钙内流和IP产生的相对时间,使IPR对钙诱导的钙释放敏感。我们还对共济失调进行了建模,共济失调是一种精细运动控制丧失的疾病,被认为是颗粒细胞到浦肯野细胞突触处信息传递故障的结果,导致钙瞬变减少或丧失。最后,我们提出了在共济失调情况下恢复钙瞬变的可能方法。