Suppr超能文献

应用弯曲和薄膜应力分析来区分生物材料的拉伸和压缩模量。

Application of flexural and membrane stress analysis to distinguish tensile and compressive moduli of biologic materials.

机构信息

Kohles Bioengineering,Portland, OR, USA; Division of Biomaterials & Biomechanics, School of Dentistry And Department of Emergency Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Human Physiology, University of Oregon, Eugene, OR, USA.

出版信息

J Mech Behav Biomed Mater. 2021 Jul;119:104474. doi: 10.1016/j.jmbbm.2021.104474. Epub 2021 Mar 19.

Abstract

Three-point bending is often used during the mechanical determination of tissue material properties. When taken to failure, the test samples often experience high deformations. The objective of this study was to present beam and plate theories as analytical tools for determining tensile and compressive elastic moduli during the transition from flexure to membrane stress states. Samples of cartilage, a highly flexible connective tissue having differing tensile and compressive moduli, were tested. Three-point bending tests were conducted on auricular (ear) and costal (rib) cartilage harvested from pigs. The influence of span length variation and Poisson's ratio assumptions were statistically assessed. Tensile elastic moduli of the ear (3.886 MPa) and rib (6.131 MPa) were derived from high-deformation bending tests. The functional assessment described here can be applied as a design input approach for tissue reconstruction and tissue engineering, considering both hard and soft tissue applications.

摘要

三点弯曲法常用于组织力学特性的机械测定。在试验至破坏时,测试样本通常会发生较大变形。本研究的目的是提出梁和板理论作为分析工具,以确定从弯曲到膜应力状态过渡时的拉伸和压缩弹性模量。软骨是一种具有不同拉伸和压缩模量的高弹性结缔组织,对其样本进行了测试。对取自猪的耳(耳)和肋(肋)软骨进行了三点弯曲试验。从高变形弯曲试验中得出了耳(3.886 MPa)和肋(6.131 MPa)软骨的拉伸弹性模量。此处描述的功能评估可作为组织重建和组织工程的设计输入方法,同时考虑硬组织和软组织应用。

相似文献

1
Application of flexural and membrane stress analysis to distinguish tensile and compressive moduli of biologic materials.
J Mech Behav Biomed Mater. 2021 Jul;119:104474. doi: 10.1016/j.jmbbm.2021.104474. Epub 2021 Mar 19.
2
Contribution of perichondrium to the mechanical properties of auricular cartilage.
J Biomech. 2021 Sep 20;126:110638. doi: 10.1016/j.jbiomech.2021.110638. Epub 2021 Jul 21.
3
Measurement of global mechanical properties of human thorax: Costal cartilage.
J Biomech. 2022 Sep;142:111242. doi: 10.1016/j.jbiomech.2022.111242. Epub 2022 Aug 6.
5
Analysis of bending behavior of native and engineered auricular and costal cartilage.
J Biomed Mater Res A. 2004 Mar 15;68(4):597-602. doi: 10.1002/jbm.a.10068.
8
Direct measurement of the Poisson's ratio of human patella cartilage in tension.
J Biomech Eng. 2002 Apr;124(2):223-8. doi: 10.1115/1.1449905.
9
Tissue-engineered articular cartilage exhibits tension-compression nonlinearity reminiscent of the native cartilage.
J Biomech. 2013 Jul 26;46(11):1784-91. doi: 10.1016/j.jbiomech.2013.05.017. Epub 2013 Jun 21.
10
Fibrin-Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction.
Ann Otol Rhinol Laryngol. 2019 Jul;128(7):640-646. doi: 10.1177/0003489419836667. Epub 2019 Mar 12.

本文引用的文献

1
Comparison of the compressive mechanical properties of auricular and costal cartilage from patients with microtia.
J Biomech. 2020 Apr 16;103:109688. doi: 10.1016/j.jbiomech.2020.109688. Epub 2020 Feb 25.
2
A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages.
Clin Biomech (Bristol). 2017 Dec;50:105-109. doi: 10.1016/j.clinbiomech.2017.10.010. Epub 2017 Oct 10.
3
Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage.
Tissue Eng Part B Rev. 2014 Feb;20(1):17-27. doi: 10.1089/ten.TEB.2013.0117. Epub 2013 Jul 3.
4
Mechanical properties of natural cartilage and tissue-engineered constructs.
Tissue Eng Part B Rev. 2011 Aug;17(4):213-27. doi: 10.1089/ten.TEB.2010.0572. Epub 2011 Apr 20.
5
A mechanical composite spheres analysis of engineered cartilage dynamics.
J Biomech Eng. 2007 Aug;129(4):473-80. doi: 10.1115/1.2746366.
6
A theoretical framework to analyze bend testing of soft tissue.
J Biomech Eng. 2007 Feb;129(1):117-20. doi: 10.1115/1.2401191.
7
Applications of an anisotropic parameter to cortical bone.
J Mater Sci Mater Med. 2000 Apr;11(4):261-5. doi: 10.1023/a:1008940914693.
8
Prediction of growth factor effects on engineered cartilage composition using deterministic and stochastic modeling.
Ann Biomed Eng. 2004 Jun;32(6):871-9. doi: 10.1023/b:abme.0000030262.82626.9c.
9
Analysis of bending behavior of native and engineered auricular and costal cartilage.
J Biomed Mater Res A. 2004 Mar 15;68(4):597-602. doi: 10.1002/jbm.a.10068.
10
Modeling the dynamic composition of engineered cartilage.
Arch Biochem Biophys. 2002 Dec 15;408(2):246-54. doi: 10.1016/s0003-9861(02)00562-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验