Suppr超能文献

PB1 催化活性位点保守模体之外的变异可能会影响甲型流感病毒 RNP 复合物的复制效率。

Variations outside the conserved motifs of PB1 catalytic active site may affect replication efficiency of the RNP complex of influenza A virus.

机构信息

Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.

Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

出版信息

Virology. 2021 Jul;559:145-155. doi: 10.1016/j.virol.2021.04.001. Epub 2021 Apr 9.

Abstract

PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.

摘要

PB1 作为流感病毒 RNA 聚合酶复合物的催化亚基,在病毒 RNA 转录和复制中发挥着重要作用。为了确定 PB1 酶活性位点的可塑性并绘制催化关键残基,构建了 658 个突变体,每个突变体在 PB1 的酶活性位点有一个到七个突变。使用小基因检测法来定量这些突变体的聚合酶活性,并使用稀疏学习来鉴定与聚合酶活性相关的残基。结果表明,聚合酶活性不仅受保守基序内的残基影响,而且受 PB1 跨基序区域的残基影响,后者主要位于手掌结构域的底部,该区域在禽 PB1 中保守,但在猪 PB1 中具有高度的序列多样性。我们的研究结果表明,PB1 保守基序之外的突变可能影响 RNA 复制,并且可能与流感病毒宿主适应性相关。

相似文献

2
Tyr82 Amino Acid Mutation in PB1 Polymerase Induces an Influenza Virus Mutator Phenotype.
J Virol. 2019 Oct 29;93(22). doi: 10.1128/JVI.00834-19. Print 2019 Nov 15.
4
Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1.
J Virol. 1994 Mar;68(3):1819-26. doi: 10.1128/JVI.68.3.1819-1826.1994.
6
Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication.
J Virol. 2014 Jun;88(11):5977-86. doi: 10.1128/JVI.00508-14. Epub 2014 Mar 12.
9
Functional analysis of conserved motifs in influenza virus PB1 protein.
PLoS One. 2012;7(5):e36113. doi: 10.1371/journal.pone.0036113. Epub 2012 May 15.

引用本文的文献

1
Avian Influenza Virus: Comparative Evolution as the Key for Predicting Host Tropism Expansion.
Pathogens. 2025 Jun 20;14(7):608. doi: 10.3390/pathogens14070608.
2
Reported human infections of H9N2 avian influenza virus in China in 2021.
Front Public Health. 2023 Dec 8;11:1255969. doi: 10.3389/fpubh.2023.1255969. eCollection 2023.
3
Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses.
PLoS Pathog. 2021 Oct 7;17(10):e1009962. doi: 10.1371/journal.ppat.1009962. eCollection 2021 Oct.
4
Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection.
Int J Mol Sci. 2021 Aug 29;22(17):9366. doi: 10.3390/ijms22179366.

本文引用的文献

2
Structures of influenza A virus RNA polymerase offer insight into viral genome replication.
Nature. 2019 Sep;573(7773):287-290. doi: 10.1038/s41586-019-1530-7. Epub 2019 Sep 4.
3
Benchmarking fold detection by DaliLite v.5.
Bioinformatics. 2019 Dec 15;35(24):5326-5327. doi: 10.1093/bioinformatics/btz536.
4
Estimates of global seasonal influenza-associated respiratory mortality: a modelling study.
Lancet. 2018 Mar 31;391(10127):1285-1300. doi: 10.1016/S0140-6736(17)33293-2. Epub 2017 Dec 14.
6
Structural insights into RNA synthesis by the influenza virus transcription-replication machine.
Virus Res. 2017 Apr 15;234:103-117. doi: 10.1016/j.virusres.2017.01.013. Epub 2017 Jan 20.
7
Structural basis of an essential interaction between influenza polymerase and Pol II CTD.
Nature. 2017 Jan 5;541(7635):117-121. doi: 10.1038/nature20594. Epub 2016 Dec 21.
9
Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.
Mol Cell. 2016 Jan 7;61(1):125-37. doi: 10.1016/j.molcel.2015.11.016. Epub 2015 Dec 17.
10
Crystal structure of the RNA-dependent RNA polymerase from influenza C virus.
Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验