Suppr超能文献

丙型流感病毒RNA依赖的RNA聚合酶的晶体结构

Crystal structure of the RNA-dependent RNA polymerase from influenza C virus.

作者信息

Hengrung Narin, El Omari Kamel, Serna Martin Itziar, Vreede Frank T, Cusack Stephen, Rambo Robert P, Vonrhein Clemens, Bricogne Gérard, Stuart David I, Grimes Jonathan M, Fodor Ervin

机构信息

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.

Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK.

出版信息

Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.

Abstract

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.

摘要

负链RNA病毒,如流感病毒,编码大型多结构域的RNA依赖性RNA聚合酶,该酶既能转录又能复制病毒RNA基因组。在流感病毒中,聚合酶(FluPol)由三种多肽组成:PB1、PB2和PA/P3。PB1包含聚合酶活性位点,而PB2和PA/P3分别含有通过抢帽起始转录所需的帽结合结构域和核酸内切酶结构域。复制通过从头起始发生,涉及互补RNA中间体。目前已获得的甲型和乙型流感病毒聚合酶的结构包括启动子RNA(病毒基因组片段的5'和3'末端),显示FluPol处于转录预起始状态。在此,我们报告了丙型流感病毒脱辅基FluPol的结构,通过X射线晶体学解析至3.9 Å,揭示了一种新的“封闭”构象。脱辅基FluPol形成一个紧密的颗粒,PB1位于其中心,一面由PB2覆盖,夹在P3的两个球状结构域之间。值得注意的是,这种结构与结合启动子的FluPol的结构截然不同。P3的核酸内切酶结构域和PB2羧基末端三分之二内的结构域完全重排。帽结合位点被PB2封闭,导致一种与转录起始不相容的构象。因此,我们的结构捕获了处于封闭的转录预激活状态的FluPol。这揭示了感染细胞中新合成的脱辅基FluPol的构象,但也可能适用于非转录核糖核蛋白复合物中的FluPol。将脱辅基FluPol的结构与结合启动子的FluPol的结构进行比较,使我们能够提出FluPol激活的机制。我们的研究证明了流感病毒RNA聚合酶具有显著的灵活性,并有助于我们理解控制转录和基因组复制的机制。

相似文献

1
Crystal structure of the RNA-dependent RNA polymerase from influenza C virus.
Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.
2
A Mechanism for the Activation of the Influenza Virus Transcriptase.
Mol Cell. 2018 Jun 21;70(6):1101-1110.e4. doi: 10.1016/j.molcel.2018.05.011. Epub 2018 Jun 14.
3
The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.
Nature. 2009 Apr 16;458(7240):914-8. doi: 10.1038/nature07745. Epub 2009 Feb 4.
6
Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site.
Nature. 2009 Apr 16;458(7240):909-13. doi: 10.1038/nature07720. Epub 2009 Feb 4.
8
Host ANP32A mediates the assembly of the influenza virus replicase.
Nature. 2020 Nov;587(7835):638-643. doi: 10.1038/s41586-020-2927-z. Epub 2020 Nov 18.
9
Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core.
PLoS Pathog. 2024 Jun 14;20(6):e1011642. doi: 10.1371/journal.ppat.1011642. eCollection 2024 Jun.
10
Role of the PB2 627 Domain in Influenza A Virus Polymerase Function.
J Virol. 2017 Mar 13;91(7). doi: 10.1128/JVI.02467-16. Print 2017 Apr 1.

引用本文的文献

1
Pharmacokinetics, safety, and tolerability of onradivir in participants with severe renal impairment and matched healthy control participants.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0046225. doi: 10.1128/aac.00462-25. Epub 2025 Aug 4.
2
Molecular basis of influenza ribonucleoprotein complex assembly and processive RNA synthesis.
Science. 2025 May 15;388(6748):eadq7597. doi: 10.1126/science.adq7597.
3
Structural basis for the activation of plant bunyavirus replication machinery and its dual-targeted inhibition by ribavirin.
Nat Plants. 2025 Mar;11(3):518-530. doi: 10.1038/s41477-025-01940-y. Epub 2025 Mar 5.
4
Purification and Ultramicroscopic Observation of the Influenza A Virus Ribonucleoprotein Complex.
Methods Mol Biol. 2025;2890:141-149. doi: 10.1007/978-1-0716-4326-6_7.
5
Understanding Influenza.
Methods Mol Biol. 2025;2890:1-26. doi: 10.1007/978-1-0716-4326-6_1.
6
7
Recombinant Influenza A Viruses Expressing Reporter Genes from the Viral NS Segment.
Int J Mol Sci. 2024 Oct 1;25(19):10584. doi: 10.3390/ijms251910584.
10
NS2 induces an influenza A RNA polymerase hexamer and acts as a transcription to replication switch.
EMBO Rep. 2024 Nov;25(11):4708-4727. doi: 10.1038/s44319-024-00208-4. Epub 2024 Jul 18.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter.
Cell. 2015 Jun 4;161(6):1267-79. doi: 10.1016/j.cell.2015.05.006. Epub 2015 May 21.
3
The RNA synthesis machinery of negative-stranded RNA viruses.
Virology. 2015 May;479-480:532-44. doi: 10.1016/j.virol.2015.03.018. Epub 2015 Mar 29.
4
Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 Å resolution.
Mol Cell. 2015 Mar 5;57(5):925-935. doi: 10.1016/j.molcel.2014.12.031. Epub 2015 Jan 22.
5
Structural insight into cap-snatching and RNA synthesis by influenza polymerase.
Nature. 2014 Dec 18;516(7531):361-6. doi: 10.1038/nature14009. Epub 2014 Nov 19.
6
Structure of influenza A polymerase bound to the viral RNA promoter.
Nature. 2014 Dec 18;516(7531):355-60. doi: 10.1038/nature14008. Epub 2014 Nov 19.
7
Molecular determinants of pathogenicity in the polymerase complex.
Curr Top Microbiol Immunol. 2014;385:35-60. doi: 10.1007/82_2014_386.
8
Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4238-45. doi: 10.1073/pnas.1315068110. Epub 2013 Oct 21.
9
Decision making in xia2.
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1260-73. doi: 10.1107/S0907444913015308. Epub 2013 Jun 18.
10
The polymerase of negative-stranded RNA viruses.
Curr Opin Virol. 2013 Apr;3(2):103-10. doi: 10.1016/j.coviro.2013.03.008. Epub 2013 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验