Unit of Cancer Prognostics and Health Outcomes, Division of Urology, University of Montreal Health Center, Montreal, QC, Canada -
Division of Experimental Oncology, Unit of Urology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy -
Minerva Urol Nephrol. 2022 Oct;74(5):590-598. doi: 10.23736/S2724-6051.21.04314-7. Epub 2021 Apr 22.
Intermediate risk prostate cancer (IR PCa) may exhibit a wide array of phenotypes, from favorable to unfavorable. NCCN criteria help distinguishing between favorable versus unfavorable subgroups. We studied and attempted to improve this classification.
Within the SEER database 2010-2016, we identified 19,193 IR PCa patients treated with radical prostatectomy. A multivariable logistic regression model predicting unfavorable IR PCa was developed and externally validated, in addition to a head-to-head comparison with NCCN IR PCa stratification.
Model development (development cohort N.=13,436: 3585 unfavorable versus 9851 favorable) rested on age, PSA, clinical T stage, biopsy Gleason Grade Group (GGG) and percentage of positive cores. All were independent predictors of unfavorable IR PCa. In external validation cohort (N.=5757: 1652 unfavorable versus 4105 favorable), NCCN stratification was 61.8% accurate in discriminating between favorable versus unfavorable, compared to 67.6% for nomogram, which exhibited excellent calibration, less pronounced departures from ideal prediction and greater net-benefit in decision curve analyses (DCA) than NCCN stratification. The optimal nomogram cutoff misclassified 312 of 1976 patients (15.8%) versus 598 of 2877 (20.8%) for NCCN stratification. Of NCCN misclassified patients, 90.0% harbored pT3-4 stages versus 84.6% of nomogram.
The newly developed, externally validated nomogram discriminates better between favorable versus unfavorable IR PCa, according to overall accuracy, calibration, DCA, and actual numbers and stage distribution of misclassified patients.
中危前列腺癌(IR PCa)可能表现出从有利到不利的广泛表型。NCCN 标准有助于区分有利亚组与不利亚组。我们研究并试图改进这种分类。
在 SEER 数据库 2010-2016 年期间,我们确定了 19193 例接受根治性前列腺切除术治疗的 IR PCa 患者。建立了预测不利 IR PCa 的多变量逻辑回归模型,并进行了外部验证,此外还与 NCCN IR PCa 分层进行了直接比较。
模型建立(发展队列 N=13436:3585 例不利与 9851 例有利)基于年龄、PSA、临床 T 分期、活检 Gleason 分级组(GGG)和阳性核心百分比。所有这些都是不利 IR PCa 的独立预测因素。在外部验证队列(N=5757:1652 例不利与 4105 例有利)中,NCCN 分层在区分有利与不利方面的准确率为 61.8%,而列线图的准确率为 67.6%,列线图表现出极好的校准,理想预测的偏离程度较低,决策曲线分析(DCA)的净收益大于 NCCN 分层。最佳列线图切点错误分类了 1976 例患者中的 312 例(15.8%),而 NCCN 分层则错误分类了 2877 例患者中的 598 例(20.8%)。在 NCCN 错误分类的患者中,90.0%为 pT3-4 期,而列线图为 84.6%。
根据总体准确性、校准、DCA 以及错误分类患者的实际数量和分期分布,新开发的经外部验证的列线图可更好地区分有利与不利的 IR PCa。