Davidson Simon, Furber Steve B
APT Group, Department of Computer Science, University of Manchester, Manchester, United Kingdom.
Front Neurosci. 2021 Apr 6;15:651141. doi: 10.3389/fnins.2021.651141. eCollection 2021.
Despite the success of Deep Neural Networks-a type of Artificial Neural Network (ANN)-in problem domains such as image recognition and speech processing, the energy and processing demands during both training and deployment are growing at an unsustainable rate in the push for greater accuracy. There is a temptation to look for radical new approaches to these applications, and one such approach is the notion that replacing the abstract neuron used in most deep networks with a more biologically-plausible spiking neuron might lead to savings in both energy and resource cost. The most common spiking networks use neurons for which a simple translation from a pre-trained ANN to an equivalent spike-based network (SNN) is readily achievable. But does the spike-based network offer an improvement of energy efficiency over the original deep network? In this work, we consider the digital implementations of the core steps in an ANN and the equivalent steps in a spiking neural network. We establish a simple method of assessing the relative advantages of rate-based spike encoding over a conventional ANN model. Assuming identical underlying silicon technology we show that most rate-coded spiking network implementations will not be more energy or resource efficient than the original ANN, concluding that more imaginative uses of spikes are required to displace conventional ANNs as the dominant computing framework for neural computation.
尽管深度神经网络(一种人工神经网络,简称ANN)在图像识别和语音处理等问题领域取得了成功,但在追求更高精度的过程中,训练和部署期间的能源和处理需求正以不可持续的速度增长。人们倾向于寻找全新的方法来解决这些应用问题,其中一种方法是认为用更符合生物学原理的脉冲神经元取代大多数深度网络中使用的抽象神经元,可能会节省能源和资源成本。最常见的脉冲网络使用的神经元,能够轻松地将预训练的人工神经网络简单转换为等效的基于脉冲的网络(SNN)。但是,基于脉冲的网络在能源效率方面是否比原始深度网络有所提高呢?在这项工作中,我们考虑了人工神经网络核心步骤的数字实现以及脉冲神经网络中的等效步骤。我们建立了一种简单的方法来评估基于速率的脉冲编码相对于传统人工神经网络模型的相对优势。假设底层硅技术相同,我们表明大多数基于速率编码的脉冲网络实现不会比原始人工神经网络更节能或更节省资源,得出的结论是,需要更具创造性地使用脉冲,才能取代传统人工神经网络成为神经计算的主导计算框架。