Lee Dong-Hee, Kim Hwi-Su, Park Ki-Woong, Park Hamin, Cho Won-Ju
Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.
Department of Electronic Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.
Biomimetics (Basel). 2023 Sep 18;8(5):432. doi: 10.3390/biomimetics8050432.
In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.
在本研究中,我们通过利用纳米线(NW)型多晶硅沟道结构来增强人工突触晶体管的突触行为。NW沟道的高表面积与体积比能够有效调制沟道电导,该电导被解释为突触权重。结果,即使在相同的栅极电压扫描范围内,NW型突触晶体管相比于薄膜型突触晶体管也表现出更大的滞后窗口。此外,与薄膜型突触晶体管相比,NW型突触晶体管在短期易化和长期记忆转变方面表现更优,这在不同频率和脉冲数下测量的配对脉冲易化和兴奋性突触后电流特性中得到了证明。此外,我们观察到了逐渐增强/抑制的特性,使得这些人工突触适用于人工神经网络。此外,NW型突触晶体管的改进的美国国家标准与技术研究院模式识别率达到了91.2%。总之,NW结构沟道有望成为下一代人工智能(AI)半导体的一项有前景的技术,并且NW结构沟道的集成对于推进AI半导体技术具有巨大潜力。