Suppr超能文献

基于深度学习的心血管风险分层,使用从视网膜照片预测的冠状动脉钙评分。

Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs.

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.

Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea.

出版信息

Lancet Digit Health. 2021 May;3(5):e306-e316. doi: 10.1016/S2589-7500(21)00043-1.

Abstract

BACKGROUND

Coronary artery calcium (CAC) score is a clinically validated marker of cardiovascular disease risk. We developed and validated a novel cardiovascular risk stratification system based on deep-learning-predicted CAC from retinal photographs.

METHODS

We used 216 152 retinal photographs from five datasets from South Korea, Singapore, and the UK to train and validate the algorithms. First, using one dataset from a South Korean health-screening centre, we trained a deep-learning algorithm to predict the probability of the presence of CAC (ie, deep-learning retinal CAC score, RetiCAC). We stratified RetiCAC scores into tertiles and used Cox proportional hazards models to evaluate the ability of RetiCAC to predict cardiovascular events based on external test sets from South Korea, Singapore, and the UK Biobank. We evaluated the incremental values of RetiCAC when added to the Pooled Cohort Equation (PCE) for participants in the UK Biobank.

FINDINGS

RetiCAC outperformed all single clinical parameter models in predicting the presence of CAC (area under the receiver operating characteristic curve of 0·742, 95% CI 0·732-0·753). Among the 527 participants in the South Korean clinical cohort, 33 (6·3%) had cardiovascular events during the 5-year follow-up. When compared with the current CAC risk stratification (0, >0-100, and >100), the three-strata RetiCAC showed comparable prognostic performance with a concordance index of 0·71. In the Singapore population-based cohort (n=8551), 310 (3·6%) participants had fatal cardiovascular events over 10 years, and the three-strata RetiCAC was significantly associated with increased risk of fatal cardiovascular events (hazard ratio [HR] trend 1·33, 95% CI 1·04-1·71). In the UK Biobank (n=47 679), 337 (0·7%) participants had fatal cardiovascular events over 10 years. When added to the PCE, the three-strata RetiCAC improved cardiovascular risk stratification in the intermediate-risk group (HR trend 1·28, 95% CI 1·07-1·54) and borderline-risk group (1·62, 1·04-2·54), and the continuous net reclassification index was 0·261 (95% CI 0·124-0·364).

INTERPRETATION

A deep learning and retinal photograph-derived CAC score is comparable to CT scan-measured CAC in predicting cardiovascular events, and improves on current risk stratification approaches for cardiovascular disease events. These data suggest retinal photograph-based deep learning has the potential to be used as an alternative measure of CAC, especially in low-resource settings.

FUNDING

Yonsei University College of Medicine; Ministry of Health and Welfare, Korea Institute for Advancement of Technology, South Korea; Agency for Science, Technology, and Research; and National Medical Research Council, Singapore.

摘要

背景

冠状动脉钙 (CAC) 评分是心血管疾病风险的临床验证标志物。我们开发并验证了一种基于从视网膜照片预测的深度学习 CAC 的新型心血管风险分层系统。

方法

我们使用了来自韩国、新加坡和英国的五个数据集的 216152 张视网膜照片来训练和验证算法。首先,我们使用来自韩国健康筛查中心的一个数据集来训练一种深度学习算法,以预测 CAC 的存在概率(即,深度学习视网膜 CAC 评分,RetiCAC)。我们将 RetiCAC 评分分为三分位,并使用 Cox 比例风险模型来评估基于韩国、新加坡和英国生物银行的外部测试集的 RetiCAC 预测心血管事件的能力。我们评估了在英国生物银行的参与者中添加到 Pooled Cohort Equation (PCE) 后,RetiCAC 的增量值。

结果

RetiCAC 在预测 CAC 的存在方面优于所有单一临床参数模型(接受者操作特征曲线下面积为 0.742,95%CI 0.732-0.753)。在韩国临床队列的 527 名参与者中,有 33 人(6.3%)在 5 年随访期间发生心血管事件。与目前的 CAC 风险分层(0、>0-100 和>100)相比,三分位 RetiCAC 显示出可比的预后性能,一致性指数为 0.71。在新加坡基于人群的队列(n=8551)中,有 310 名(3.6%)参与者在 10 年内发生致命性心血管事件,三分位 RetiCAC 与致命性心血管事件风险增加显著相关(风险比[HR]趋势 1.33,95%CI 1.04-1.71)。在英国生物银行(n=47679)中,有 337 名(0.7%)参与者在 10 年内发生致命性心血管事件。当添加到 PCE 时,三分位 RetiCAC 改善了中间风险组(HR 趋势 1.28,95%CI 1.07-1.54)和边缘风险组(1.62,1.04-2.54)的心血管风险分层,连续净重新分类指数为 0.261(95%CI 0.124-0.364)。

解释

深度学习和视网膜照片衍生的 CAC 评分在预测心血管事件方面与 CT 扫描测量的 CAC 相当,并改进了目前的心血管疾病事件风险分层方法。这些数据表明,基于视网膜照片的深度学习有可能作为 CAC 的替代测量方法,尤其是在资源有限的环境中。

资金

延世大学医学院;韩国保健福祉部、韩国技术革新研究院;新加坡科学、技术和研究局;以及新加坡国家医学研究理事会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验