Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Hum Mol Genet. 2021 Jun 17;30(13):1230-1246. doi: 10.1093/hmg/ddab116.
UBQLN2 mutations cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD), but the pathogenic mechanisms by which they cause disease remain unclear. Proteomic profiling identified 'mitochondrial proteins' as comprising the largest category of protein changes in the spinal cord (SC) of the P497S UBQLN2 mouse model of ALS/FTD. Immunoblots confirmed P497S animals have global changes in proteins predictive of a severe decline in mitochondrial health, including oxidative phosphorylation (OXPHOS), mitochondrial protein import and network dynamics. Functional studies confirmed mitochondria purified from the SC of P497S animals have age-dependent decline in nearly all steps of OXPHOS. Mitochondria cristae deformities were evident in spinal motor neurons of aged P497S animals. Knockout (KO) of UBQLN2 in HeLa cells resulted in changes in mitochondrial proteins and OXPHOS activity similar to those seen in the SC. KO of UBQLN2 also compromised targeting and processing of the mitochondrial import factor, TIMM44, resulting in accumulation in abnormal foci. The functional OXPHOS deficits and TIMM44-targeting defects were rescued by reexpression of WT UBQLN2 but not by ALS/FTD mutant UBQLN2 proteins. In vitro binding assays revealed ALS/FTD mutant UBQLN2 proteins bind weaker with TIMM44 than WT UBQLN2 protein, suggesting that the loss of UBQLN2 binding may underlie the import and/or delivery defect of TIMM44 to mitochondria. Our studies indicate a potential key pathogenic disturbance in mitochondrial health caused by UBQLN2 mutations.
UBQLN2 突变导致肌萎缩侧索硬化症(ALS)伴额颞叶痴呆(FTD),但其致病机制尚不清楚。蛋白质组学分析鉴定出“线粒体蛋白”是 ALS/FTD 的 P497S UBQLN2 小鼠模型脊髓(SC)中蛋白变化最大的类别。免疫印迹证实 P497S 动物存在与线粒体健康严重下降相关的蛋白质的全局变化,包括氧化磷酸化(OXPHOS)、线粒体蛋白输入和网络动力学。功能研究证实,从 P497S 动物的 SC 中纯化的线粒体在 OXPHOS 的几乎所有步骤中都存在与年龄相关的下降。年龄较大的 P497S 动物的脊髓运动神经元中线粒体嵴畸形明显。HeLa 细胞中 UBQLN2 的敲除(KO)导致线粒体蛋白和 OXPHOS 活性发生类似于在 SC 中所见的变化。UBQLN2 的 KO 还损害了线粒体输入因子 TIMM44 的靶向和加工,导致其在异常焦点中积累。WT UBQLN2 的重新表达可挽救功能性 OXPHOS 缺陷和 TIMM44 靶向缺陷,但 ALS/FTD 突变 UBQLN2 蛋白则不能。体外结合测定表明,ALS/FTD 突变 UBQLN2 蛋白与 TIMM44 的结合比 WT UBQLN2 蛋白弱,表明 UBQLN2 结合的丧失可能是 TIMM44 向线粒体的输入和/或递药缺陷的基础。我们的研究表明,UBQLN2 突变导致线粒体健康的潜在关键致病障碍。