Saragadam Vishwanath, DeZeeuw Michael, Baraniuk Richard G, Veeraraghavan Ashok, Sankaranarayanan Aswin C
IEEE Trans Pattern Anal Mach Intell. 2021 Jul;43(7):2233-2244. doi: 10.1109/TPAMI.2021.3075228. Epub 2021 Jun 10.
We introduce a novel video-rate hyperspectral imager with high spatial, temporal and spectral resolutions. Our key hypothesis is that spectral profiles of pixels within each super-pixel tend to be similar. Hence, a scene-adaptive spatial sampling of a hyperspectral scene, guided by its super-pixel segmented image, is capable of obtaining high-quality reconstructions. To achieve this, we acquire an RGB image of the scene, compute its super-pixels, from which we generate a spatial mask of locations where we measure high-resolution spectrum. The hyperspectral image is subsequently estimated by fusing the RGB image and the spectral measurements using a learnable guided filtering approach. Due to low computational complexity of the superpixel estimation step, our setup can capture hyperspectral images of the scenes with little overhead over traditional snapshot hyperspectral cameras, but with significantly higher spatial and spectral resolutions. We validate the proposed technique with extensive simulations as well as a lab prototype that measures hyperspectral video at a spatial resolution of 600 ×900 pixels, at a spectral resolution of 10 nm over visible wavebands, and achieving a frame rate at 18fps.
我们介绍了一种具有高空间、时间和光谱分辨率的新型视频速率高光谱成像仪。我们的关键假设是每个超像素内像素的光谱轮廓趋于相似。因此,在其超像素分割图像的引导下,对高光谱场景进行场景自适应空间采样能够获得高质量的重建结果。为实现这一点,我们获取场景的RGB图像,计算其超像素,从中生成我们测量高分辨率光谱的位置的空间掩码。随后,通过使用可学习的引导滤波方法融合RGB图像和光谱测量值来估计高光谱图像。由于超像素估计步骤的计算复杂度低,我们的设置能够以比传统快照高光谱相机几乎没有额外开销的方式捕获场景的高光谱图像,但具有显著更高的空间和光谱分辨率。我们通过广泛的模拟以及一个实验室原型对所提出的技术进行了验证,该原型在可见波段以600×900像素的空间分辨率、10nm的光谱分辨率测量高光谱视频,并实现了18fps的帧率。